Download Free Dynamic Games For Network Security Book in PDF and EPUB Free Download. You can read online Dynamic Games For Network Security and write the review.

The goal of this SpringerBrief is to collect and systematically present the state-of-the-art in this research field and the underlying game-theoretic and learning tools to the broader audience with general network security and engineering backgrounds. Particularly, the exposition of this book begins with a brief introduction of relevant background knowledge in Chapter 1, followed by a review of existing applications of SG in addressing various dynamic network security problems in Chapter 2. A detailed treatment of dynamic security games with information asymmetry is given in Chapters 3–5. Specifically, dynamic security games with extra information that concerns security competitions, where the defender has an informational advantage over the adversary are discussed in Chapter 3. The complementary scenarios where the defender lacks information about the adversary is examined in Chapter 4 through the lens of incomplete information SG. Chapter 5 is devoted to the exploration of how to proactively create information asymmetry for the defender’s benefit. The primary audience for this brief includes network engineers interested in security decision-making in dynamic network security problems. Researchers interested in the state-of-the-art research on stochastic game theory and its applications in network security will be interested in this SpringerBrief as well. Also graduate and undergraduate students interested in obtaining comprehensive information on stochastic game theory and applying it to address relevant research problems can use this SpringerBrief as a study guide. Lastly, concluding remarks and our perspective for future works are presented in Chapter 6.
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
Covering attack detection, malware response, algorithm and mechanism design, privacy, and risk management, this comprehensive work applies unique quantitative models derived from decision, control, and game theories to understanding diverse network security problems. It provides the reader with a system-level theoretical understanding of network security, and is essential reading for researchers interested in a quantitative approach to key incentive and resource allocation issues in the field. It also provides practitioners with an analytical foundation that is useful for formalising decision-making processes in network security.
This book constitutes the refereed proceedings of the 7th EAI International Conference on Game Theory for Networks, GameNets 2017, held in Knoxville, Tennessee, USA, in May 2017. The 10 conference papers and 5 invited papers presented cover topics such as smart electric grid, Internet of Things (IoT), social networks, networks security, mobile service markets, and epidemic control.
This book constitutes the refereed proceedings of the 12th International Conference on Decision and Game Theory for Security, GameSec 2021,held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 20 full papers presented were carefully reviewed and selected from 37 submissions. The papers focus on Theoretical Foundations in Equilibrium Computation; Machine Learning and Game Theory; Ransomware; Cyber-Physical Systems Security; Innovations in Attacks and Defenses.
Cyber-Security Threats, Actors, and Dynamic Mitigation provides both a technical and state-of-the-art perspective as well as a systematic overview of the recent advances in different facets of cyber-security. It covers the methodologies for modeling attack strategies used by threat actors targeting devices, systems, and networks such as smart homes, critical infrastructures, and industrial IoT. With a comprehensive review of the threat landscape, the book explores both common and sophisticated threats to systems and networks. Tools and methodologies are presented for precise modeling of attack strategies, which can be used both proactively in risk management and reactively in intrusion prevention and response systems. Several contemporary techniques are offered ranging from reconnaissance and penetration testing to malware detection, analysis, and mitigation. Advanced machine learning-based approaches are also included in the area of anomaly-based detection, that are capable of detecting attacks relying on zero-day vulnerabilities and exploits. Academics, researchers, and professionals in cyber-security who want an in-depth look at the contemporary aspects of the field will find this book of interest. Those wanting a unique reference for various cyber-security threats and how they are detected, analyzed, and mitigated will reach for this book often.
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instruction set and address space layout randomization, just-in-time compilers, among other techniques. However, many challenging research problems remain to be solved, such as the security of virtualization infrastructures, secure and resilient techniques to move systems within a virtualized environment, automatic diversification techniques, automated ways to dynamically change and manage the configurations of systems and networks, quantification of security improvement, potential degradation and more. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats is designed for advanced -level students and researchers focused on computer science, and as a secondary text book or reference. Professionals working in this field will also find this book valuable.
Master the fundamentals of resilient power grid control applications with this up-to-date resource from four industry leaders Resilient Control Architectures and Power Systems delivers a unique perspective on the singular challenges presented by increasing automation in society. In particular, the book focuses on the difficulties presented by the increased automation of the power grid. The authors provide a simulation of this real-life system, offering an accurate and comprehensive picture of a how a power control system works and, even more importantly, how it can fail. The editors invite various experts in the field to describe how and why power systems fail due to cyber security threats, human error, and complex interdependencies. They also discuss promising new concepts researchers are exploring that promise to make these control systems much more resilient to threats of all kinds. Finally, resilience fundamentals and applications are also investigated to allow the reader to apply measures that ensure adequate operation in complex control systems. Among a variety of other foundational and advanced topics, you'll learn about: The fundamentals of power grid infrastructure, including grid architecture, control system architecture, and communication architecture The disciplinary fundamentals of control theory, human-system interfaces, and cyber security The fundamentals of resilience, including the basis of resilience, its definition, and benchmarks, as well as cross-architecture metrics and considerations The application of resilience concepts, including cyber security challenges, control challenges, and human challenges A discussion of research challenges facing professionals in this field today Perfect for research students and practitioners in fields concerned with increasing power grid automation, Resilient Control Architectures and Power Systems also has a place on the bookshelves of members of the Control Systems Society, the Systems, Man and Cybernetics Society, the Computer Society, the Power and Energy Society, and similar organizations.
Cyber Security Threats and Challenges Facing Human Life provides a comprehensive view of the issues, threats, and challenges that are faced in the cyber security domain. This book offers detailed analysis of effective countermeasures and mitigations. The financial sector, healthcare, digital manufacturing, and social media are some of the important areas in which cyber-attacks are frequent and cause great harm. Hence, special emphasis is given to the study and analysis of cyber security challenges and countermeasures in those four important areas. KEY FEATURES • Discusses the prominence of cyber security in human life • Discusses the significance of cyber security in the post-COVID-19 world • Emphasizes the issues, challenges, and applications of cyber security mitigation methods in business and different sectors • Provides comphrension of the impact of cyber security threats and challenges in digital manufacturing and the internet of things environment • Offers understanding of the impact of big data breaches and future trends in data security This book is primarily aimed at undergraduate students, graduate students, researchers, academicians, and professionals who are interested in exploring their research and knowledge in cyber security domain.
This book explores fundamental scientific problems essential for autonomous cyber defense. Specific areas include: Game and control theory-based moving target defenses (MTDs) and adaptive cyber defenses (ACDs) for fully autonomous cyber operations; The extent to which autonomous cyber systems can be designed and operated in a framework that is significantly different from the human-based systems we now operate; On-line learning algorithms, including deep recurrent networks and reinforcement learning, for the kinds of situation awareness and decisions that autonomous cyber systems will require; Human understanding and control of highly distributed autonomous cyber defenses; Quantitative performance metrics for the above so that autonomous cyber defensive agents can reason about the situation and appropriate responses as well as allowing humans to assess and improve the autonomous system. This book establishes scientific foundations for adaptive autonomous cyber systems and ultimately brings about a more secure and reliable Internet. The recent advances in adaptive cyber defense (ACD) have developed a range of new ACD techniques and methodologies for reasoning in an adaptive environment. Autonomy in physical and cyber systems promises to revolutionize cyber operations. The ability of autonomous systems to execute at scales, scopes, and tempos exceeding those of humans and human-controlled systems will introduce entirely new types of cyber defense strategies and tactics, especially in highly contested physical and cyber environments. The development and automation of cyber strategies that are responsive to autonomous adversaries pose basic new technical challenges for cyber-security. This book targets cyber-security professionals and researchers (industry, governments, and military). Advanced-level students in computer science and information systems will also find this book useful as a secondary textbook.