Download Free Dynamic Aspects Of Plant Ultrastructure Book in PDF and EPUB Free Download. You can read online Dynamic Aspects Of Plant Ultrastructure and write the review.

Plant cell structure and function; Gene expression and its regulation in plant cells; The manipulation of plant cells.
The first compilation of a wealth of knowledge on tobacco BY-2 cells, often cited as the HeLa cell line of higher plants. Basic issues of cell cycle progression, cytokinesis, cell organization and factors that are involved in these processes are covered in detail. Since the tobacco cell line is used as a tool for research in molecular and cellular biology, several chapters on such studies are also included. Further, changes of primary and secondary metabolites during culture and factors that affect these processes are treated. Last but not least, the so far unpublished historical background of the BY-2 cell line is described. This volume is a must for any scientist working in the field of plant biology.
This textbook is about plant cells and the way in which their behaviour is regulated to suit the function which they fulfil in the plant. The purpose of the book is to emphasise the structural and spatial events which occur during the development of specialised plant cells. It is designed to fill the gap between descriptive anatomy books on the one hand and purely physiological books on the other. Its novelty is in its emphasis on the interaction between the structure of a plant cell and the way in which it performs its role in the plant. It is written in two parts, of four chapters each. The first part concentrates on cells as individuals, and presents a detailed account of their structure in various situations, together with descriptions of how such structures are achieved and function. The second part places these descriptions in the context of tissues, organs and whole plants.
A plant anatomy textbook unlike any other on the market today. Carol A. Peterson described the first edition as 'the best book on the subject of plant anatomy since the texts of Esau'. Traditional plant anatomy texts include primarily descriptive aspects of structure, this book not only provides a comprehensive coverage of plant structure, but also introduces aspects of the mechanisms of development, especially the genetic and hormonal controls, and the roles of plasmodesmata and the cytoskeleton. The evolution of plant structure and the relationship between structure and function are also discussed throughout. Includes extensive bibliographies at the end of each chapter. It provides students with an introduction to many of the exciting, contemporary areas at the forefront of research in the development of plant structure and prepares them for future roles in teaching and research in plant anatomy.
Plants interact with a large number of microoganisms which have a major impact on their growth either by establishing mutually beneficial symbiotic relationships or by developing as pathogens at the expense of the plant with deleterious effects. These microorganisms differ greatly not only in their nature (viruses, phytoplasmas, bacteria, fungi, nematodes, ... ) but also in the way they contact, penetrate and invade their host. Histology and cytology have brought an essential contribution to our knowledge of these phenomena. They have told us for instance, how specialized structures of the pathogen are often involved in the adhesion and penetration into the plant, how the interface between both organisms is finely arranged at the cellular level, or what structural alterations affect the infected tissues. They have thus set the stage for the investigations of the underlying molecular mechanisms could be undertaken. Such investigations have been remarkably successful in the recent years, expanding considerably our understanding of plant-microorganism interactions in terms of biochemical changes, rapid modifications of enzymatic activities, coordinated gene activation, signal reception and transduction. Biochemistry, molecular biology and cellular physiology have taken precedence in the phytopathologist's set of methods.
Vascular Transport in Plants provides an up-to-date synthesis of new research on the biology of long distance transport processes in plants. It is a valuable resource and reference for researchers and graduate level students in physiology, molecular biology, physiology, ecology, ecological physiology, development, and all applied disciplines related to agriculture, horticulture, forestry and biotechnology. The book considers long-distance transport from the perspective of molecular level processes to whole plant function, allowing readers to integrate information relating to vascular transport across multiple scales. The book is unique in presenting xylem and phloem transport processes in plants together in a comparative style that emphasizes the important interactions between these two parallel transport systems. - Includes 105 exceptional figures - Discusses xylem and phloem transport in a single volume, highlighting their interactions - Syntheses of structure, function and biology of vascular transport by leading authorities - Poses unsolved questions and stimulates future research - Provides a new conceptual framework for vascular function in plants
Water Relations of Plants attempts to explain the importance of water through a description of the factors that control the plant water balance and how they affect the physiological processes that determine the quantity and quality of growth. Organized into 13 chapters, this book first discusses the functions and properties of water and the plant cell water relations. Subsequent chapters focus on measurement and control of soil water, as well as growth and functions of root. This book also looks into the water absorption, the ascent of sap, the transpiration, and the water stress and its effects on plant processes and growth. This book will be useful for students, teachers, and investigators in both basic and applied plant science, as well as for botanists, agronomists, foresters, horticulturists, soil scientists, and even laymen with an interest in plant water relations.
Thirty-four years have elapsed since the publication of the late Professor P. Maheshwari's text, An Introduction to the Embryology of Angiosperms, a work which for many years served as an invaluable guide for students and a rich source book for research workerso Various texts dealing with sections of the braad spectrum oftopics encompassed by Maheshwari in his book have appeared in the interim, but a compendious modem work dealing with the whole field has been lacking. This present volume splendidly meets the need, and it is altogether fitting that Professor B. M. lohri, long an associate and close colleague of Professor Maheshwari and himself a prolific contributor to the subject, should have undertaken the task of editing it. When Maheshwari wrote, it was stiIl feasible for one author to handIe the subject, but today even someone with his fine bread th of vision and depth of understanding could not, alone, do it justice. So the effort has to be a collaborative one; and Professor lohri's achievement has been to bring together a team of authoritative collaborators, assign them their responsibilities, and put them to work to produce a text as integrated in its treatment as the diversity of the subject would allow. The product vividly illustrates the advances that have been made in the study of angiosperm reproductive systems in the last 30 years, and the book is surely destined to become the new standard for student and researcher alike.
Origins of Plastids looks at symbiosis and symbiogenesis as a mechanism of evolution. This theory of endosymbiotic evolution postulates that photosynthetic prokaryotes living as endosymbionts within eukaryotic cells gradually evolved into the organelle structures called chloroplasts. The theory is controversial but has been strongly advocated by Lynn Margulis. Based on a colloquium held at the Bodega Bay Marine Laboratory of the University of California at Davis, Origins of Plastids reviews recent data on this most basic problem in plant evolution. In it, leading researchers in the field apply the theory of endosymbiotic evolution to plastid origins, producing an important new reference work for both professionals and graduates interested in the origins of life, the origins of the eukaryotic cell and its organelles, and the evolution of the higher plants in general. Origins of Plastids represents the state-of-the-art in its field. It should find a place on the bookshelves of people interested in microbiology, plant science, phycology, cell biology, and evolution.