Download Free Durability And Fatigue Behavior Of Cip Concrete Connections For Accelerated Bridge Construction Book in PDF and EPUB Free Download. You can read online Durability And Fatigue Behavior Of Cip Concrete Connections For Accelerated Bridge Construction and write the review.

Continuous longitudinal and transverse U-bar joint connections between flanges of the decked bulb-Ts (DBTs) or between precast panels for accelerated bridge construction are investigated. The procedure for selecting durable closure pour (CP) materials for the connections is discussed firstly. The accelerated construction is quantified as two categories: overnight cure and 7-day cure of CP materials. Candidate materials are selected first based on literature review as well as tests of compressive strength and flow and workability. Then, performance criteria for selecting durable CP materials for both categories are developed based on durability tests of selected candidate materials. These durability tests include freezing-and-thawing durability, shrinkage, bond, and permeability tests. To investigate the longitudinal U-bar joint details, four pairs of full-scale slabs connected by a U-bar detail with one of the selected CP materials, overnight cure and 7-day cure, were tested. The loading demand necessary in the slab testing is determined based on the maximum forces in the longitudinal joint from an analytical parametric study. Static and fatigue tests under four-point flexural loading and three-point flexural-shear loading were conducted. Test results were evaluated based on flexural capacity, curvature behavior, cracking, deflection and steel strain. The transverse U-bar joint details are investigated to provide negative moment continuity in the multi-span bridges. Four full-scale specimens connected by a U-bar detail with one of the selected CP materials, overnight cure and 7-day cure, were tested. Static and fatigue tests under tension loading were conducted. The loading demand necessary in the beam testing is determined based on the maximum forces in the transverse joint from an analytical study. Test results were evaluated based on tension capacity, cracking, displacement and steel strain. Based on the test results, the developed longitudinal and transverse U-bar joint details are viable connection systems.
TRB’s National Cooperative Highway Research Program (NCHRP) Report 698: Application of Accelerated Bridge Construction Connections in Moderate-to-High Seismic Regions evaluates the performance of connection details for bridge members in accelerated bridge construction in medium-to-high seismic regions and offers suggestions for further research.
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel
Both authors are innovators of the prefabrication of concrete structures an important advance towards industrialization of the building process. The detailing of connections between the factory produced elements is crucial, and the "strut and tie" models presented here can be directly applied in str
Ultra-high performance concrete (UHPC) is an advanced construction material that affords new opportunities for the future of the highway infrastructure. The Federal Highway Administration has been engaged in research on the optimal uses of UHPC in the highway bridge infrastructure since 2001 through its Bridge of the Future initiative. This report presents the state of the art in UHPC with regard to uses in the highway transportation infrastructure. Compiled from hundreds of references representing research, development, and deployment efforts around the world, this report provides a framework for gaining a deeper understanding of UHPC as well as a platform from which to increase the use of this class of advanced cementitious composite materials. This report will assist stakeholders, including State transportation departments, researchers, and design consultants, to grasp the capabilities of UHPC and thus use the material to address pressing needs in the highway transportation infrastructure.
This international handbook is essential for geotechnical engineers and engineering geologists responsible for designing and constructing piled foundations. It explains general principles and practice and details current types of pile, piling equipment and methods. It includes calculations of the resistance of piles to compressive loads, pile group
The Concrete Construction Engineering Handbook, Second Edition provides in depth coverage of concrete construction engineering and technology. It features state-of-the-art discussions on what design engineers and constructors need to know about concrete, focusing on - The latest advances in engineered concrete materials Reinforced concrete construction Specialized construction techniques Design recommendations for high performance With the newly revised edition of this essential handbook, designers, constructors, educators, and field personnel will learn how to produce the best and most durably engineered constructed facilities.
First Published in 1999: The Bridge Engineering Handbook is a unique, comprehensive, and state-of-the-art reference work and resource book covering the major areas of bridge engineering with the theme "bridge to the 21st century."