Download Free Ductile Mode Cutting Of Brittle Materials Book in PDF and EPUB Free Download. You can read online Ductile Mode Cutting Of Brittle Materials and write the review.

This book provides a systematic and comprehensive interdisciplinary overview of ductile mode cutting of brittle materials, covering a range of topics from the fundamental physics to engineering practices. Discussing the machining mechanics and material properties, it explains the fundamental mechanism of ductile-to-brittle transition in the cutting of brittle materials. It also presents theoretical modeling and molecular dynamic simulation to demonstrate that ductile mode cutting can be achieved under certain conditions, as well as extensive experimental studies that produced smooth and damage-free surfaces on different materials, such as silicon, glass, tungsten carbide and calcium fluoride. Lastly, it explores how the ductile mode cutting performance and machinability of brittle materials can be further improved by hybrid machining processes like ultrasonic vibration and thermal-assisted cutting technologies in order to meet industry demands.
The materials mechanics of the controlled separation of a body into two or more parts – cutting – using a blade or tool or other mechanical implement is a ubiquitous process in most engineering disciplines. This is the only book available devoted to the cutting of materials generally, the mechanics of which (toughness, fracture, deformation, plasticity, tearing, grating, chewing, etc.) have wide ranging implications for engineers, medics, manufacturers, and process engineers, making this text of particular interest to a wide range of engineers and specialists. - The only book to explain and unify the process and techniques of cutting in metals AND non-metals. The emphasis on biomaterials, plastics and non-metals will be of considerable interest to many, while the transfer of knowledge from non-metals fields offers important benefits to metal cutters - Comprehensive, written with this well-known author's lightness of touch, the book will attract the attention of many readers in this underserved subject - The clarity of the text is further enhanced by detailed examples and case studies, from the grating of cheese on an industrial scale to the design of scalpels
This book draws upon the science of tribology to understand, predict and improve abrasive machining processes. Pulling together information on how abrasives work, the authors, who are renowned experts in abrasive technology, demonstrate how tribology can be applied as a tool to improve abrasive machining processes. Each of the main elements of the abrasive machining system are looked at, and the tribological factors that control the efficiency and quality of the processes are described. Since grinding is by far the most commonly employed abrasive machining process, it is dealt with in particular detail. Solutions are posed to many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid wheel wear, vibrations, work-piece burn and high process costs. This practical approach makes this book an essential tool for practicing engineers. Uses the science of tribology to improve understanding and of abrasive machining processes in order to increase performance, productivity and surface quality of final products A comprehensive reference on how abrasives work, covering kinematics, heat transfer, thermal stresses, molecular dynamics, fluids and the tribology of lubricants Authoritative and ground-breaking in its first edition, the 2nd edition includes 30% new and updated material, including new topics such as CMP (Chemical Mechanical Polishing) and precision machining for micro-and nano-scale applications
Presenting modern advances in the machining of ceramics and composites, this work offers broadly based, fundamental information for selecting the appropriate machining processes and parameters, developing successful manufacturing strategies, and designing novel machining systems. It focuses on scientific and engineering developments affecting the present and future of machining processes.
The five volume set CCIS 224-228 constitutes the refereed proceedings of the International conference on Applied Informatics and Communication, ICAIC 2011, held in Xi'an, China in August 2011. The 446 revised papers presented were carefully reviewed and selected from numerous submissions. The papers cover a broad range of topics in computer science and interdisciplinary applications including control, hardware and software systems, neural computing, wireless networks, information systems, and image processing.
Faced with ever-increasing market demands, manufacturing industry is forced to seek innovation and technological breakthrough. This state-of-the-art text aims to integrate broad aspects of precision and production engineering to cope with rapid changes in market needs and technological developments as we enter the 21st century. It addresses basic theory, extensive research in advanced topics, industrial applications, and relevant surveys in related fields. Major subjects covered by this book include: Advanced manufacturing systems; Ultra-precision machining and micro machining; Nanotechnology for fabrication and measurement; Chemo-mechanical processes; Rapid prototyping technology; New materials and advanced processes; Computer-aided production engineering; Manufacturing process control; Planning. This volume contains the proceedings of the 10th International Conference on Precision Engineering (ICPE), which was held in July 2001, in Yokohama, Japan. ICPE is a well-established conference in the field of production and precision engineering, covering a wide range of topics for future-oriented manufacturing systems and processes; it is organized by the Japan Society for Precision Engineering (JSPE). This book can be used as a reference for graduate and undergraduate courses in precision and production engineering, and also for researchers and industrial engineers to capture current trends in this field.
This handbook covers the fly cutting technique, an ultra-precision mechanical machining technology which is regarded as the fastest and most reliable low-cost machining method to generate high quality complex surfaces. The ultra-precision raster milling provides more flexibility and suitability for freeform and structural surfaces with a uniform quality with sub-micrometric form error and nanometric surface roughness. These surfaces are widely applied into optics, medicine, biotechnology, electronics, and communications. The fundamental and latest advancing knowledge of fly-cutting technology is important for the future development and applications in ultra-precision mechanical machining technology. This book provides a good reference for fly-cutting technology in ultra-precision machining for undergraduate and postgraduate students, researchers, engineers, and postdoctoral fellow in advanced manufacturing area. It gives the audience an overview of the working principles, process mechanism, salient features, applications, and research directions of ultra-precision fly-cutting technology.
The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.
This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.
This volume aims to promote the latest advances in abrasive technology. Emphasis is placed on both the development of practical methods and the understanding of the mechanisms of machining ceramics, semiconductors, steel alloys, and other advanced materials. About 50 technical papers are included in the volume, describing the recent advances in the mechanics of abrasive machining, mechanisms of grinding, difficult-to-machine materials, grinding wheel technology, machinery and measurement, polishing, lapping, and nano-machining. Theoretically, the book discusses the material removal and deformation mechanisms; from the practical point of view, it provides useful data for direct industrial applications.