Download Free Dualities In Graphs And Digraphs Book in PDF and EPUB Free Download. You can read online Dualities In Graphs And Digraphs and write the review.

In this thesis we describe dualities in directed as well as undirected graphs based on tools such as width-parameters, obstructions and substructures. We mainly focus on directed graphs and their structure. In the context of a long open conjecture that bounds the monotonicity costs of a version of the directed cops and robber game, we introduce new width-measures based on directed separations that are closely related to DAG-width. We identify a tangle-like obstruction for which we prove a duality theorem. Johnson, Reed, Robertson, Seymour and Thomas introduced the width measure directed treewidth as a generalisation of treewidth for directed graphs. We introduce a new width measure, the cyclewidth, which is parametrically equivalent to directed treewidth. Making use of the connection between directed graphs and bipartite graphs with perfect matchings we characterise the digraphs of low cyclewidth. Generalising the seminal work by Robertson and Seymour resulting in a global structure theorem for undirected graphs, there is the goal of obtaining a structure theorem, based on directed treewidth, describing the structure of the directed graphs excluding a fixed butterfly minor. Working in this direction we present a new flat wall theorem for directed graphs which we believe to provide a better base for a directed structure theorem than the existing ones. On undirected graphs we present several results on induced subgraphs in the graphs themselves or the square graph of their linegraph. These results range from general statements about all graphs to the consideration of specific graph classes such as the one with exactly two moplexes. In der vorliegenden Arbeit beschreiben wir Dualitäten in gerichteten sowie in ungerichteten Graphen basierend auf Konzepten wie Weiteparametern, Obstruktionen und Substrukturen. Der Hauptfokus der Arbeit liegt bei gerichteten Graphen und ihrer Struktur. Im Kontext einer lange offenen Vermutung, dass die Monotoniekosten einer Variante des Räuber und Gendarm Spiels für gerichtete Graphen beschränkt sind, führen wir neue Weiteparameter ein, die auf gerichteten Separationen basieren und eng mit DAG-Weite verwandt sind. Wir identifizieren Tangle-artige Obstruktionen zu diesen Weiteparametern und beweisen die Dualität zwischen diesen beiden Konzepten. Johnson, Reed, Robertson, Seymour und Thomas haben die gerichtete Baumweite als gerichtete Verallgemeinerung der Baumweite auf ungerichteten Graphen eingeführt. Wir führen einen neuen Weiteparameter, die Cyclewidth, ein, der parametrisch equivalent zur gerichteten Baumweite ist. Unter Nutzung der Verwandtschaft von gerichteten Graphen und bipartiten Graphen mit perfekten Matchings charakterisieren wir die gerichteten Graphen mit kleiner Cyclewidth. Ein einschlagendes Ergebnis in der Graphenstrukturtheorie ist das Strukturtheorem von Robertson und Seymour. Basierend darauf gibt es Anstrengungen ein solches Strukturtheorem auch für gerichtete Graphen zu finden und dafür die gerichtete Baumweite als Grundlage zu nutzen. Dieses Theorem soll die Struktur aller gerichteten Graphen beschreiben, die einen festen gerichteten Graphen als Butterflyminoren ausschließen. In diesem Kontext beweisen wir ein neues Flat-wall-theorem für gerichtete Graphen, dass unserer Erwartung nach eine bessere Basis für ein gerichtetes Strukturtheorem bietet als die bisher betrachteten Alternativen. Auf ungerichteten Graphen präsentieren wir einige Ergebnisse bezüglich induzierten Subgraphen in gegebenen Graphen oder ihren Linegraphen. Diese Ergebnisse reichen von der Betrachtung spezifischer Graphklassen, wie den Graphen mit zwei Moplexen, bis zu Ergebnissen auf der allgemeinen Klasse aller Graphen.
The study of directed graphs (digraphs) has developed enormously over recent decades, yet the results are rather scattered across the journal literature. This is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, the authors discuss a large number of applications and their generalizations to topics such as the traveling salesman problem, project scheduling, genetics, network connectivity, and sparse matrices. Numerous exercises are included. For all graduate students, researchers and professionals interested in graph theory and its applications, this book will be essential reading.
This volume contains 73 papers, presenting the state of the art in computer-aided design in control systems (CADCS). The latest information and exchange of ideas presented at the Symposium illustrates the development of computer-aided design science and technology within control systems. The Proceedings contain six plenary papers and six special invited papers, and the remainder are divided into five themes: CADCS packages; CADCS software and hardware; systems design methods; CADCS expert systems; CADCS applications, with finally a discussion on CADCS in education and research.
In this research book, there are some research chapters on “Neutrosophic Duality”. With researches on the basic properties, the research book starts to make Neutrosophic Duality more understandable. Some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2498 readers in Scribd. It’s titled “Beyond Neutrosophic Graphs” and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. [Ref] Henry Garrett, (2022). “Beyond Neutrosophic Graphs”, Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 978-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf). Also, some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3218 readers in Scribd. It’s titled “Neutrosophic Duality” and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It’s smart to consider a set but acting on its complement that what’s done in this research book which is popular in the terms of high readers in Scribd. [Ref] Henry Garrett, (2022). “Neutrosophic Duality”, Florida: GLOBAL KNOW- LEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf). \section{Background} There are some researches covering the topic of this research. In what follows, there are some discussion and literature reviews about them. \\ First article is titled ``properties of SuperHyperGraph and neutrosophic SuperHyperGraph'' in \textbf{Ref.} \cite{HG1} by Henry Garrett (2022). It's first step toward the research on neutrosophic SuperHyperGraphs. This research article is published on the journal ``Neutrosophic Sets and Systems'' in issue 49 and the pages 531-561. In this research article, different types of notions like dominating, resolving, coloring, Eulerian(Hamiltonian) neutrosophic path, n-Eulerian(Hamiltonian) neutrosophic path, zero forcing number, zero forcing neutrosophic- number, independent number, independent neutrosophic-number, clique number, clique neutrosophic-number, matching number, matching neutrosophic-number, girth, neutrosophic girth, 1-zero-forcing number, 1-zero- forcing neutrosophic-number, failed 1-zero-forcing number, failed 1-zero-forcing neutrosophic-number, global- offensive alliance, t-offensive alliance, t-defensive alliance, t-powerful alliance, and global-powerful alliance are defined in SuperHyperGraph and neutrosophic SuperHyperGraph. Some Classes of SuperHyperGraph and Neutrosophic SuperHyperGraph are cases of research. Some results are applied in family of SuperHyperGraph and neutrosophic SuperHyperGraph. Thus this research article has concentrated on the vast notions and introducing the majority of notions. \\ The seminal paper and groundbreaking article is titled ``neutrosophic co-degree and neutrosophic degree alongside chromatic numbers in the setting of some classes related to neutrosophic hypergraphs'' in \textbf{Ref.} \cite{HG2} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on general forms without using neutrosophic classes of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Current Trends in Computer Science Research (JCTCSR)” with abbreviation ``J Curr Trends Comp Sci Res'' in volume 1 and issue 1 with pages 06-14. The research article studies deeply with choosing neutrosophic hypergraphs instead of neutrosophic SuperHyperGraph. It's the breakthrough toward independent results based on initial background. \\ The seminal paper and groundbreaking article is titled ``Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes'' in \textbf{Ref.} \cite{HG3} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental SuperHyperNumber and using neutrosophic SuperHyperClasses of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Mathematical Techniques and Computational Mathematics(JMTCM)” with abbreviation ``J Math Techniques Comput Math'' in volume 1 and issue 3 with pages 242-263. The research article studies deeply with choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers. \\ In some articles are titled ``0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph'' in \textbf{Ref.} \cite{HG4} by Henry Garrett (2022), ``0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs'' in \textbf{Ref.} \cite{HG5} by Henry Garrett (2022), ``Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG6} by Henry Garrett (2022), ``Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition'' in \textbf{Ref.} \cite{HG7} by Henry Garrett (2022), ``Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG8} by Henry Garrett (2022), ``The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph'' in \textbf{Ref.} \cite{HG9} by Henry Garrett (2022), ``Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG10} by Henry Garrett (2022), ``Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG11} by Henry Garrett (2022), ``Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG13} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG14} by Henry Garrett (2022), ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG15} by Henry Garrett (2022), ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs '' in \textbf{Ref.} \cite{HG16} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG17} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG18} by Henry Garrett (2022),``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances'' in \textbf{Ref.} \cite{HG19} by Henry Garrett (2022), ``(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses'' in \textbf{Ref.} \cite{HG20} by Henry Garrett (2022), ``SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions'' in \textbf{Ref.} \cite{HG21} by Henry Garrett (2022), ``Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments'' in \textbf{Ref.} \cite{HG22} by Henry Garrett (2022), ``SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses'' in \textbf{Ref.} \cite{HG23} by Henry Garrett (2022), ``SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG24} by Henry Garrett (2023), ``The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG25} by Henry Garrett (2023), ``Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG26} by Henry Garrett (2023), ``Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG27} by Henry Garrett (2023), ``Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG28} by Henry Garrett (2023), ``Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique'' in \textbf{Ref.} \cite{HG29} by Henry Garrett (2023), ``Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG30} by Henry Garrett (2023), ``Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG31} by Henry Garrett (2023), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG32} by Henry Garrett (2023), ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG33} by Henry Garrett (2023), ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG34} by Henry Garrett (2022), ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG35} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG36} by Henry Garrett (2022), ``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph'' in \textbf{Ref.} \cite{HG37} by Henry Garrett (2022), ``Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)'' in \textbf{Ref.} \cite{HG38} by Henry Garrett (2022), there are some endeavors to formalize the basic SuperHyperNotions about neutrosophic SuperHyperGraph and SuperHyperGraph. \\ Some studies and researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG39} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2732 readers in Scribd. It's titled ``Beyond Neutrosophic Graphs'' and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. \\ Also, some studies and researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG40} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3504 readers in Scribd. It's titled ``Neutrosophic Duality'' and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd. -- \begin{thebibliography}{595} \bibitem{HG1} Henry Garrett, ``\textit{Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph}'', Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf). (https://digitalrepository.unm.edu/nss\_journal/vol49/iss1/34). \bibitem{HG2} Henry Garrett, ``\textit{Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs}'', J Curr Trends Comp Sci Res 1(1) (2022) 06-14. \bibitem{HG3} Henry Garrett, ``\textit{Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes}'', J Math Techniques Comput Math 1(3) (2022) 242-263. \bibitem{HG4} Garrett, Henry. ``\textit{0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph.}'' CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942. https://oa.mg/work/10.5281/zenodo.6319942 \bibitem{HG5} Garrett, Henry. ``\textit{0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs.}'' CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.13140/rg.2.2.35241.26724. https://oa.mg/work/10.13140/rg.2.2.35241.26724 \bibitem{HG6} Henry Garrett, ``\textit{Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1). \bibitem{HG7} Henry Garrett, ``\textit{Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition}'', Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1). \bibitem{HG8} Henry Garrett, ``\textit{Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1). \bibitem{HG9} Henry Garrett, ``\textit{The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph}'', Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1). \bibitem{HG10} Henry Garrett, ``\textit{Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010262,(doi: 10.20944/preprints202301.0262.v1). \bibitem{HG11} Henry Garrett, ``\textit{Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1). \bibitem{HG12} Henry Garrett, ``\textit{Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1). \bibitem{HG13} Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1). \bibitem{HG14} Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1). \bibitem{HG15} Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', Preprints 2023, 2023010044 \bibitem{HG16} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1). \bibitem{HG17} Henry Garrett, \textit{``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs''}, Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1). \bibitem{HG18} Henry Garrett, \textit{``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints''}, Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1). \bibitem{HG19} Henry Garrett, \textit{``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances''}, Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1). \bibitem{HG20} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses}'', Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1). \bibitem{HG21} Henry Garrett, ``\textit{SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions}'', Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1). \bibitem{HG22} Henry Garrett, ``\textit{Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments}'', Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1). \bibitem{HG23} Henry Garrett, ``\textit{SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses}'', Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1). \bibitem{HG24} Henry Garrett,``\textit{SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs}'', ResearchGate 2023,(doi: 10.13140/RG.2.2.35061.65767). \bibitem{HG25} Henry Garrett,``\textit{The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.18494.15680). \bibitem{HG26} Henry Garrett,``\textit{Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922). \bibitem{HG27} Henry Garrett,``\textit{Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.15897.70243). \bibitem{HG28} Henry Garrett,``\textit{Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004). \bibitem{HG29} Henry Garrett,``\textit{Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.23172.19849). \bibitem{HG30} Henry Garrett,``\textit{Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968). \bibitem{HG31} Henry Garrett, ``\textit{Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007). \bibitem{HG32} Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803). \bibitem{HG33} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.35774.77123). \bibitem{HG34} Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287). \bibitem{HG35} Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.29430.88642). \bibitem{HG36} Henry Garrett, ``\textit{Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487). \bibitem{HG37} Henry Garrett, \textit{``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph''}, ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244). \bibitem{HG38} Henry Garrett, ``\textit{Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)}'', ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160). \bibitem{HG39} Henry Garrett, (2022). ``\textit{Beyond Neutrosophic Graphs}'', Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf). \bibitem{HG40} Henry Garrett, (2022). ``\textit{Neutrosophic Duality}'', Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf). \end{thebibliography}
Mathematics of Autonomy provides solid mathematical foundations for building useful Autonomous Systems. It clarifies what makes a system autonomous rather than simply automated, and reveals the inherent limitations of systems currently incorrectly labeled as autonomous in reference to the specific and strong uncertainty that characterizes the environments they operate in. Such complex real-world environments demand truly autonomous solutions to provide the flexibility and robustness needed to operate well within them.This volume embraces hybrid solutions to demonstrate extending the classes of uncertainty autonomous systems can handle. In particular, it combines physical-autonomy (robots), cyber-autonomy (agents) and cognitive-autonomy (cyber and embodied cognition) to produce a rigorous subset of trusted autonomy: Cyber-Physical-Cognitive autonomy (CPC-autonomy).The body of the book alternates between underlying theory and applications of CPC-autonomy including 'Autonomous Supervision of a Swarm of Robots' , 'Using Wind Turbulence against a Swarm of UAVs' and 'Unique Super-Dynamics for All Kinds of Robots (UAVs, UGVs, UUVs and USVs)' to illustrate how to effectively construct Autonomous Systems using this model. It avoids the wishful thinking that characterizes much discussion related to autonomy, discussing the hard limits and challenges of real autonomous systems. In so doing, it clarifies where more work is needed, and also provides a rigorous set of tools to tackle some of the problem space.
This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
This book presents an elementary introduction to the theory of oriented matroids. The way oriented matroids are intro- duced emphasizes that they are the most general - and hence simplest - structures for which linear Programming Duality results can be stated and proved. The main theme of the book is duality. Using Farkas' Lemma as the basis the authors start withre- sults on polyhedra in Rn and show how to restate the essence of the proofs in terms of sign patterns of oriented ma- troids. Most of the standard material in Linear Programming is presented in the setting of real space as well as in the more abstract theory of oriented matroids. This approach clarifies the theory behind Linear Programming and proofs become simpler. The last part of the book deals with the facial structure of polytopes respectively their oriented matroid counterparts. It is an introduction to more advanced topics in oriented matroid theory. Each chapter contains suggestions for furt- herreading and the references provide an overview of the research in this field.
This book constitutes the thoroughly refereed post-proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2006, held in Bergen, Norway in June 2006. The 30 revised full papers presented together with one invited paper were carefully selected from 91 submissions. The papers address all aspects of graph-theoretic concepts in computer science.
This edited volume offers a detailed account of the theory of directed graphs from the perspective of important classes of digraphs, with each chapter written by experts on the topic. Outlining fundamental discoveries and new results obtained over recent years, this book provides a comprehensive overview of the latest research in the field. It covers core new results on each of the classes discussed, including chapters on tournaments, planar digraphs, acyclic digraphs, Euler digraphs, graph products, directed width parameters, and algorithms. Detailed indices ease navigation while more than 120 open problems and conjectures ensure that readers are immersed in all aspects of the field. Classes of Directed Graphs provides a valuable reference for graduate students and researchers in computer science, mathematics and operations research. As digraphs are an important modelling tool in other areas of research, this book will also be a useful resource to researchers working in bioinformatics, chemoinformatics, sociology, physics, medicine, etc.
Discrete Mathematics is one of the fastest growing areas in mathematics today with an ever-increasing number of courses in schools and universities. Graphs and Applications is based on a highly successful Open University course and the authors have paid particular attention to the presentation, clarity and arrangement of the material, making it ideally suited for independent study and classroom use. Includes a large number of examples, problems and exercises.