Download Free Dual Use Life Science Research Dur C Book in PDF and EPUB Free Download. You can read online Dual Use Life Science Research Dur C and write the review.

The potential misuse of advances in life sciences research is raising concerns about national security threats. Dual Use Research of Concern in the Life Sciences: Current Issues and Controversies examines the U.S. strategy for reducing biosecurity risks in life sciences research and considers mechanisms that would allow researchers to manage the dissemination of the results of research while mitigating the potential for harm to national security.
Continuing advances in science and technology offer the promise of providing tools to meet global challenges in health, agriculture, the environment, and economic development; some of the benefits are already being realized. However, such advances have the potential to challenge the oversight systems for responsible conduct of life sciences research with dual use potential â€" research that may have beneficial applications but that also could be misused to cause harm. Between June 10 and 13, 2018, more than 70 participants from 30 different countries and 5 international organizations took part in an international workshop, The Governance of Dual Use Research in the Life Sciences: Advancing Global Consensus on Research Oversight, to promote global dialogue and increased common understandings of the essential elements of governance for such research. Hosted by the Croatian Academy of Sciences and Arts in Zagreb, Croatia, the workshop was a collaboration among the InterAcademy Partnership, the Croatian Academy, the Croatian Society for Biosafety and Biosecurity, and the U.S. National Academies of Sciences, Engineering, and Medicine. This publication summarizes the presentations and discussions from the workshop.
In recent years much has happened to justify an examination of biological research in light of national security concerns. The destructive application of biotechnology research includes activities such as spreading common pathogens or transforming them into even more lethal forms. Policymakers and the scientific community at large must put forth a vigorous and immediate response to this challenge. This new book by the National Research Council recommends that the government expand existing regulations and rely on self-governance by scientists rather than adopt intrusive new policies. One key recommendation of the report is that the government should not attempt to regulate scientific publishing but should trust scientists and journals to screen their papers for security risks, a task some journals have already taken up. With biological information and tools widely distributed, regulating only U.S. researchers would have little effect. A new International Forum on Biosecurity should encourage the adoption of similar measures around the world. Seven types of risky studies would require approval by the Institutional Biosafety Committees that already oversee recombinant DNA research at some 400 U.S. institutions. These "experiments of concern" include making an infectious agent more lethal and rendering vaccines powerless.
Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.
In September 2011, scientists announced new experimental findings that would not only threaten the conduct and publication of influenza research, but would have significant policy and intelligence implications. The findings presented a modified variant of the H5N1 avian influenza virus (hereafter referred to as the H5N1 virus) that was transmissible via aerosol between ferrets. These results suggested a worrisome possibility: the existence of a new airborne and highly lethal H5N1 virus that could cause a deadly global pandemic. In response, a series of international discussions on the nature of dual-use life science arose. These discussions addressed the complex social, technical, political, security, and ethical issues related to dual-use research. This Research Topic will be devoted to contributions that explore this matrix of issues from a variety of case study and international perspectives.
The ebook edition of this title is Open Access and freely available to read online. Ethical Issues in Covert, Security and Surveillance Research showcases that it is only when the integrity of research is carefully pursued can users of the evidence produced be assured of its value and its ethical credentials.
What Is the Dual-Use Dilemma? The so-called “dual-use dilemma” arises in the context of research in the biological and other sciences as a consequence of the fact that one and the same piece of sci- tific research sometimes has the potential to be used for harm as well as for good. A dual-use dilemma is an ethical dilemma, and an ethical dilemma for the researcher (and for those who have the power or authority to assist or impede the researcher’s work, e. g. , governments). It is an ethical dilemma since it is about promoting good in the context of the potential for also causing harm, e. g. , the p- motion of health in the context of providing the wherewithal for the killing of in- cents. It is an ethical dilemma for the researcher not because he or she is aiming at anything other than a good outcome; typically, the researcher intends no harm, but only good. Rather, the dilemma arises for the researcher because of the potential actions of others. Malevolent non-researchers might steal dangerous biological agents produced by the researcher; alternatively, other researchers—or at least their governments or leadership—might use the results of the original researcher’s work for malevolent purposes. The malevolent purposes in question include bioterrorism, biowarfare and blackmail for financial gain.
On October 17, 2014, spurred by incidents at U.S. government laboratories that raised serious biosafety concerns, the United States government launched a one-year deliberative process to address the continuing controversy surrounding so-called "gain-of-function" (GOF) research on respiratory pathogens with pandemic potential. The gain of function controversy began in late 2011 with the question of whether to publish the results of two experiments involving H5N1 avian influenza and continued to focus on certain research with highly pathogenic avian influenza over the next three years. The heart of the U.S. process is an evaluation of the potential risks and benefits of certain types of GOF experiments with influenza, SARS, and MERS viruses that would inform the development and adoption of a new U.S. Government policy governing the funding and conduct of GOF research. Potential Risks and Benefits of Gain-of-Function Research is the summary of a two-day public symposia on GOF research. Convened in December 2014 by the Institute of Medicine and the National Research Council, the main focus of this event was to discuss principles important for, and key considerations in, the design of risk and benefit assessments of GOF research. Participants examined the underlying scientific and technical questions that are the source of current discussion and debate over GOF research involving pathogens with pandemic potential. This report is a record of the presentations and discussion of the meeting.
Recent scandals and controversies, such as data fabrication in federally funded science, data manipulation and distortion in private industry, and human embryonic stem cell research, illustrate the importance of ethics in science. Responsible Conduct of Research, now in a completely updated second edition, provides an introduction to the social, ethical, and legal issues facing scientists today.