Download Free Drying Phenomena Book in PDF and EPUB Free Download. You can read online Drying Phenomena and write the review.

Comprehensively covers conventional and novel drying systems and applications, while keeping a focus on the fundamentals of drying phenomena. Presents detailed thermodynamic and heat/mass transfer analyses in a reader-friendly and easy-to-follow approach Includes case studies, illustrative examples and problems Presents experimental and computational approaches Includes comprehensive information identifying the roles of flow and heat transfer mechanisms on the drying phenomena Considers industrial applications, corresponding criterion, complications, prospects, etc. Discusses novel drying technologies, the corresponding research platforms and potential solutions
This e-book presents recent advances in research in the field of particulate systems. A comprehensive background on operations involving particulate materials with a didactic approach is illustrated. Fundamentals and applications in a variety of multi-phase flow reactors are explained with a clear focus on the analysis of transport phenomena, experimental techniques and modeling. The volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.
Drying Principles and Practice presents the fundamental principles that underlie drying arts as a basis for explaining the behavior of a drying plant. This book begins with an introductory chapter, followed by an account of the phenomena that causes the influence of moisture on its host material and manner in which moisture may be expelled by heat into the humid surroundings. The quantitative description of the way a moist material dries and how it dries under commercial conditions are also provided. The remainder of this text is devoted to surveying less-common methods of drying, moisture-measurement techniques, dryer-control systems, and aspects of the choice and design of industrial dryers. This publication is valuable to engineers, but is also a good source for senior undergraduate and postgraduate students engaged in studies of heat with mass transfer.
This book is interdisciplinary in character and combines the knowledge of me chanics and chemical engineering with the aim of presenting a more exhaustive analysis ofthe phenomena occurring in wet materials during drying. Traditionally, the subject of drying has been an almost exclusive domain of chemical engineers. The drying curricula have mostly included only the courses of heat and mass transfer or diffusion. The mechanical phenomena that accompany drying, as for example, warping or deformation of dried materials, or the drying induced stresses and fissures of the material, were ignored or considered in a rather obscure way. This book broadens the scope of drying theory, bringing into the curriculum the tools enabling the study of both heat and mass transport processes and the me chanical phenomena that occur in wet materials under drying. There is little available literature that brings together heat and mass transport processes and mechanical phenomena in a unified approach to drying processes.
Smart Food Industry: The Blockchain for Sustainable Engineering, Volume I - Fundamentals, Technologies, and Management is a comprehensive overview of the current state of knowledge about food engineering and processing, under sustainable engineering perspective. This book includes disruptive approaches that will potentially enable the food industry for the transition to sustainable production. Divided into four parts, the book explores (i) fundamentals of sustainable food, (ii) conventional technologies in the food industry, (iii) sustainabile emerging technologies in food industries, and (iv) sustainable management in food industries. The book is an invaluable reference resource for students, researchers, graduates, and professionals, in general, who wish to gain knowledge in the engineering and food processing area as well as about sustainable food industry practices.
It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications.
Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. - Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion - Written by a first-class expert in the field of advanced methods in thermodynamics - Provides a synthesis of recent thermodynamic developments in practical systems - Presents very elaborate literature discussions from the past fifty years
Unique and informative, Water Properties of Food, Pharmaceutical, and Biological Materials is based on lectures and papers given by leading international researchers at the 9th International Symposium of the Properties of Water in Foods (ISOPOW 9) that took place in September 2004. Each chapter presents an authoritative account of
Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers because of their excellent structural, electronic, optical, chemical and mechanical properties. Carbon nanotube research, especially that aiming at industrial applications, is becoming more important. This book covers recent research topics regarding the physical, structural, chemical and electric properties on carbon nanotubes. All chapters were written by researchers who are active on the front lines. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.