Download Free Drug Resistance In Leukemia And Lymphoma Ii Book in PDF and EPUB Free Download. You can read online Drug Resistance In Leukemia And Lymphoma Ii and write the review.

The last ten years have seen the publication of a vast amount of data regarding cellular resistance to drugs in cancer cells. Recent studies have demonstrated that drug resistance assays appear to be predictive of clinical response and suggest that clinicians should now be considering the potential applications of these assays in the treatment of patients with hematological neoplasms. This collection of papers from the International Symposium on the Clinical Value of Drug Resistance Assays in Leukemia and Lymphoma, Amsterdam, 1992, provides a state-of-the-art discussion on drug resistance assays and their role in the design and individualization of treatment protocols.
Cellular drug resistance is a major limitation to the success of chemotherapy of leu kemia and lymphoma. The importance of this has now been recognized by both clinicians and scientists. It is of utmost importance to bridge the gap between laboratory and clinic in this field of research. This is the main purpose of the series of International Symposia on Drug Resistance in Leukemia and Lymphoma. These are held every three years in Am sterdam, The Netherlands, since 1992. This book contains the proceedings of the third of these meetings, organised in 1998. The book covers all important aspects of drug resistance in leukemia and lymphoma, both in the form of extensive reviews as in manuscripts describing original data. General mechanisms of resistance are discussed, including the drug resistance related proteins p glycoprotein, MRP (multi-drug resistance protein) and LRP (lung resistance protein), and the role of glutathione and glutathione-S-transferases. Moreover, more drug type-specific mechanisms of resistance are a topic, such as for glucocorticoids and antifolates. Much in formation is provided on apoptosis and its regulators, and on the results of cell culture drug resistance assays. Several papers focus on the modulation or circumvention of drug resistance.
Cellular drug resistance is a major limitation to the success of chemotherapy of leu kemia and lymphoma. The importance of this has now been recognized by both clinicians and scientists. It is of utmost importance to bridge the gap between laboratory and clinic in this field of research. This is the main purpose of the series of International Symposia on Drug Resistance in Leukemia and Lymphoma. These are held every three years in Am sterdam, The Netherlands, since 1992. This book contains the proceedings of the third of these meetings, organised in 1998. The book covers all important aspects of drug resistance in leukemia and lymphoma, both in the form of extensive reviews as in manuscripts describing original data. General mechanisms of resistance are discussed, including the drug resistance related proteins p glycoprotein, MRP (multi-drug resistance protein) and LRP (lung resistance protein), and the role of glutathione and glutathione-S-transferases. Moreover, more drug type-specific mechanisms of resistance are a topic, such as for glucocorticoids and antifolates. Much in formation is provided on apoptosis and its regulators, and on the results of cell culture drug resistance assays. Several papers focus on the modulation or circumvention of drug resistance.
This book provides a comprehensive and up-to-date review of all aspects of childhood Acute Lymphoblastic Leukemia, from basic biology to supportive care. It offers new insights into the genetic pre-disposition to the condition and discusses how response to early therapy and its basic biology are utilized to develop new prognostic stratification systems and target therapy. Readers will learn about current treatment and outcomes, such as immunotherapy and targeted therapy approaches. Supportive care and management of the condition in resource poor countries are also discussed in detail. This is an indispensable guide for research and laboratory scientists, pediatric hematologists as well as specialist nurses involved in the care of childhood leukemia.
With the devastating complication of cancer cells becoming simultaneously resistant to many structurally and mechanistically unrelated drugs, the efficacy of chemotherapeutic management of cancer often becomes severely limited. In Multi-Drug Resistance in Cancer, leading researchers in the field provide comprehensive and up-to-date reviews of multidrug resistance mechanisms, from over-expression of ATP-binding cassette drug transporters such as P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance protein, to the drug ratio-dependent antagonism and the paradigm of cancer stem cells. The extensive volume also includes strategies to overcome multidrug resistance, from the development of compounds that inhibit drug transporter function to the modulation of transporter expression, as well as techniques for detection and imaging of drug transporters, methods for investigation of drug resistance in animal models, and strategies to evaluate the efficacy of resistance reversal agents. As a volume in the highly successful Methods in Molecular Biology series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, Multi-Drug Resistance in Cancer offers a state-of-art collection of reviews and methods for both basic and clinician investigators who are interested in the vital study of cancer multi-drug resistance mechanisms and reversal strategies.
This book provides with a comprehensive overview of the role of drug transporters in drug disposition and efficacy/toxicity, as well as drug-drug interactions and recent advances in the field. Transporters are known determinants of drug disposition and efficacy/toxicity. In general, they are divided into solute carrier (SLC) and ATP binding cassette (ABC) families, and are located along cell membranes, where they mediate drug uptake into cells and export out of cells. Drug transporters are essential in maintaining cell homeostasis, and their gene mutations may cause or contribute to severe human genetic disorders, such as cystic fibrosis, neurological disease, retinal degeneration, anemia, and cholesterol and bile transport defects. Conversely, some diseases may also alter transporter functions and expressions, in turn aggravating disease process. Further, since over-expression of some ABC transporters is a potential contributor to multidrug-resistance (MDR), the book presents a number of strategies to overcome MDR, including ABC transporter inhibitors and applying epigenetic methods to modulate transporter expressions and functions. This book is useful for graduate students and professionals who are looking to refresh or expand their knowledge of this exciting field.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Over the last several decades, the introduction of new chemotherapeutic drugs and drug combinations has resulted in increased long term remission rates in several important tumor types. These include childhood leukemia, adult leukemias and lymphomas, as well as testicular and trophoblastic tumors. The addition of high-dose chemotherapy with growth factor and hemopoietic stem cell support has increased clinical remission rates even further. For the majority of patients with some of the more common malignancies, however, palliation (rather than cure) is still the most realistic goal of chemotherapy for metastatic disease. The failure of chemotherapy to cure metastatic cancer is commonly referred to among clinicians as "drug resistance". This phenomenon can, however, often be viewed as the survival of malignant cells that resulted from a failure to deliver an effective drug dose to the (cellular) target because of anyone of or combination of a multitude of individual factors. Clinically, this treatment failure is often viewed as the rapid occurrence of resistance at the single cell level. However, in experimental systems, stable drug resistance is usually relatively slow to emerge.
This monograph provides a comprehensive overview of recent advances in the field of vasopressin and oxytocin. In the summer of 1997, scientists from over 20 countries congregated in Montreal for the 1997 World Congress of Neurohypophysial Hormones, a conference that united the fields of vasopressin, neurohypophysis and oxytocin in a single joint meeting that gave rise to the present book. The organization of a joint meeting was prompted by several recent developments. Specifically the molecular characterization of the vasopressin/oxytocin receptor family made it mandatory to adopt an integrated view and to discuss the vasopressin/oxytocin ligand/receptor family as a whole. To ensure em phasis on novelty, the conference focused on advances made over the last two years and also included important contributions by scientists that had not previously been associated with the vasopressin/oxytocin field. Vasopressin and oxytocin are two neurohormones that exert a wide spectrum of cen tral and peripheral actions. Accordingly, the vasopressin/oxytocin field embraces a large number of different domains, ranging from neuroscience, endocrinology, and oncology to renal, reproductive, and cardiovascular physiology and pathology.
This volume details our current understanding of the architecture and signaling capabilities of the B cell antigen receptor (BCR) in health and disease. The first chapters review new insights into the assembly of BCR components and their organization on the cell surface. Subsequent contributions focus on the molecular interactions that connect the BCR with major intracellular signaling pathways such as Ca2+ mobilization, membrane phospholipid metabolism, nuclear translocation of NF-kB or the activation of Bruton’s Tyrosine Kinase and MAP kinases. These elements orchestrate cytoplasmic and nuclear responses as well as cytoskeleton dynamics for antigen internalization. Furthermore, a key mechanism of how B cells remember their cognate antigen is discussed in detail. Altogether, the discoveries presented provide a better understanding of B cell biology and help to explain some B cell-mediated pathogenicities, like autoimmune phenomena or the formation of B cell tumors, while also paving the way for eventually combating these diseases.