Download Free Drug Receptor Thermodynamics Book in PDF and EPUB Free Download. You can read online Drug Receptor Thermodynamics and write the review.

Drug-Receptor Thermodynamics is the first book to provide in depth coverage of principles and applications of thermodynamic drug-receptor interactions. The book starts from familiar points, making thermodynamics accessible to anyone interested in how drugs work. The ideas presented cover general principles as well as laying the groundwork for new ways of examining drug action. * covers an area of increasing interest and relevance in the field of drug design and discovery * excellent explanation of why thermodynamics is at the heart of drug action * contributions from many of the worlds leading experts in the field Anyone interested in drug receptor interaction will find something of use in this book. It will be of particular relevance for pharmacologists, health science researchers and medicinal chemists.
This practical reference for medicinal and pharmaceutical chemists combines the theoretical background with modern methods as well as applications from recent lead finding and optimization projects. Divided into two parts on the thermodynamics and kinetics of drug-receptor interaction, the text provides the conceptual and methodological basis for characterizing binding mechanisms for drugs and other bioactive molecules. It covers all currently used methods, from experimental approaches, such as ITC or SPR, right up to the latest computational methods. Case studies of real-life lead or drug development projects are also included so readers can apply the methods learned to their own projects. Finally, the benefits of a thorough binding mode analysis for any drug development project are summarized in an outlook chapter written by the editors.
Applied Biophysics for Drug Discovery is a guide to new techniques and approaches to identifying and characterizing small molecules in early drug discovery. Biophysical methods are reasserting their utility in drug discovery and through a combination of the rise of fragment-based drug discovery and an increased focus on more nuanced characterisation of small molecule binding, these methods are playing an increasing role in discovery campaigns. This text emphasizes practical considerations for selecting and deploying core biophysical method, including but not limited to ITC, SPR, and both ligand-detected and protein-detected NMR. Topics covered include: • Design considerations in biophysical-based lead screening • Thermodynamic characterization of protein-compound interactions • Characterizing targets and screening reagents with HDX-MS • Microscale thermophoresis methods (MST) • Screening with Weak Affinity Chromatography • Methods to assess compound residence time • 1D-NMR methods for hit identification • Protein-based NMR methods for SAR development • Industry case studies integrating multiple biophysical methods This text is ideal for academic investigators and industry scientists planning hit characterization campaigns or designing and optimizing screening strategies.
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Drug-Acceptor Interactions: Modeling theoretical tools to test and evaluate experimental equilibrium effects suggests novel theoretical tools to test and evaluate drug interactions seen with combinatorial drug therapy. The book provides an in-depth, yet controversial, exploration of existing tools for analysis of dose-response studies at equilibrium or steady state. The book is recommended reading for post-graduate students and researchers engaged in the study of systems biology, networks, and the pharmacodynamics of natural or industrial drugs, as well as for medical clinicians interested in drug application and combinatorial drug therapy. Even people without mathematical skills will be able to follow the pros and cons of reaction schemes and their related distribution equations. Chapter 9 is a hands-on guide for software to plot, fit and analyze one’s own data.
Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.
Connects fundamental knowledge of multivalent interactions with current practice and state-of-the-art applications Multivalency is a widespread phenomenon, with applications spanning supramolecular chemistry, materials chemistry, pharmaceutical chemistry and biochemistry. This advanced textbook provides students and junior scientists with an excellent introduction to the fundamentals of multivalent interactions, whilst expanding the knowledge of experienced researchers in the field. Multivalency: Concepts, Research & Applications is divided into three parts. Part one provides background knowledge on various aspects of multivalency and cooperativity and presents practical methods for their study. Fundamental aspects such as thermodynamics, kinetics and the principle of effective molarity are described, and characterisation methods, experimental methodologies and data treatment methods are also discussed. Parts two and three provide an overview of current systems in which multivalency plays an important role in chemistry and biology, with a focus on the design rules, underlying chemistry and the fundamental principles of multivalency. The systems covered range from chemical/materials-based ones such as dendrimers and sensors, to biological systems including cell recognition and protein binding. Examples and case studies from biochemistry/bioorganic chemistry as well as synthetic systems feature throughout the book. Introduces students and young scientists to the field of multivalent interactions and assists experienced researchers utilising the methodologies in their work Features examples and case studies from biochemistry/bioorganic chemistry, as well as synthetic systems throughout the book Edited by leading experts in the field with contributions from established scientists Multivalency: Concepts, Research & Applications is recommended for graduate students and junior scientists in supramolecular chemistry and related fields, looking for an introduction to multivalent interactions. It is also highly useful to experienced academics and scientists in industry working on research relating to multivalent and cooperative systems in supramolecular chemistry, organic chemistry, pharmaceutical chemistry, chemical biology, biochemistry, materials science and nanotechnology.
This practical reference for medicinal and pharmaceutical chemists combines the theoretical background with modern methods as well as applications from recent lead finding and optimization projects. Divided into two parts on the thermodynamics and kinetics of drug-receptor interaction, the text provides the conceptual and methodological basis for characterizing binding mechanisms for drugs and other bioactive molecules. It covers all currently used methods, from experimental approaches, such as ITC or SPR, right up to the latest computational methods. Case studies of real-life lead or drug development projects are also included so readers can apply the methods learned to their own projects. Finally, the benefits of a thorough binding mode analysis for any drug development project are summarized in an outlook chapter written by the editors.
The application of bioinformatics approaches in drug design involves an interdisciplinary array of sophisticated techniques and software tools to elucidate hidden or complex biological data. This work reviews the latest bioinformatics approaches used for drug discovery. The text covers ligand-based and structure-based approaches for computer-aided drug design, 3D pharmacophore modeling, molecular dynamics simulation, the thermodynamics of ligand−receptor and ligand−enzyme association, thermodynamic characterization and optimization, and techniques for computational genomics and proteomics.
The lock-and-key principle formulated by Emil Fischer as early as the end of the 19th century has still not lost any of its significance for the life sciences. The basic aspects of ligand-protein interaction may be summarized under the term 'molecular recognition' and concern the specificity as well as stability of ligand binding. Molecular recognition is thus a central topic in the development of active substances, since stability and specificity determine whether a substance can be used as a drug. Nowadays, computer-aided prediction and intelligent molecular design make a large contribution to the constant search for, e. g., improved enzyme inhibitors, and new concepts such as that of pharmacophores are being developed. An up-to-date presentation of an eternally young topic, this book is an indispensable information source for chemists, biochemists and pharmacologists dealing with the binding of ligands to proteins.