Download Free Drag Reduction By Polymer Additives Book in PDF and EPUB Free Download. You can read online Drag Reduction By Polymer Additives and write the review.

Drag Reduction of Turbulent Flows by Additives is the first treatment of the subject in book form. The treatment is extremely broad, ranging from physicochemical to hydromechanical aspects. The book shows how fibres, polymer molecules or surfactants at very dilute concentrations can reduce the drag of turbulent flow, leading to energy savings. The dilute solutions are considered in terms of the physical chemistry and rheology, and the properties of turbulent flows are presented in sufficient detail to explain the various interaction mechanisms. Audience: Those active in fundamental research on turbulence and those seeking to apply the effects described. Fluid mechanical engineers, rheologists, those interested in energy saving methods, or in any other application in which the flow rate in turbulent flow should be increased.
Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.
This book, based on lectures given at the Polytechnic of Milan, gives a broad overview of the field of polymer dynamics. In these lectures the aim is to stress the fundamental concepts of the behaviour of polymers without drawing on the more advanced mathematical formalism which often obscures the natural elegance of the subject matter. Professor De Gennes is one of the most distinguished workers in the field of material science. Therefore this book will be welcomed by both the experienced researcher in the area and the interested layman. It will be of particular value to graduate students.
​This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
Proceedings of the Third International Conference on Frontiers of Polymers and Advanced Materials held in Kuala Lumpur, Malaysia, January 16-20, 1995
Do we have an adequate understanding of fluid dynamics phenomena in nature and evolution, and what physical models do we need? What can we learn from nature to stimulate innovations in thinking as well as in engineering applications? Concentrating on flight and propulsion, this unique and accessible book compares fluid dynamics solutions in nature with those in engineering. The respected international contributors present up-to-date research in an easy to understand manner, giving common viewpoints from fields such as zoology, engineering, biology, fluid mechanics and physics. This transdisciplinary approach eliminates barriers and opens wider perspectives to both of the challenging questions above. Contents: Applications in Engineering and Medicine; Inspiration from Nature; Steady and Unsteady Fluid Dynamics; Specific Numerical and Experimental Methods
In 1976 a similar titled IUTAM Symposium (Structure of Turbulence and Drag Reduction) was held in Washington . However, the progress made during the last thirteen years as weil as the much promising current research desired a second one this year. In Washington drag reduction by additives and by direct manipulation of the walls (compliant walls and heated surfaces) were discussed. In the meantime it became evident that drag reduction also occurs when turbulence is influenced by geometrical means, e.g. by influencing the pressure distribution by the shape of the body (airfoils) or by the introduction of streamwise perturbances on a body (riblets). In the recent years turbulence research has seen increasing attention being focused on the investigation of coherent structures, mainly in Newtonian fluids. We all know that these structures are a significant feature of turbulent flows, playing an important role in the energy balance in such flows. However their place in turbulence theories as weil as the factors influencing their development are still poorly understood. Consequently, the investigation of phenomena in which the properties of coherent structures are alte red provides a promising means of improving our understanding of turbulent flows in general.
Experimental measurements were made to determine the effect of drag reducing polymer additives on the surface pressure fluctuations on smooth and rough surfaces in relative motion with water. Changes in surface pressure fluctuation intensity, caused either by the addition of drag reducing polymer or by changes in surface roughness, or both, were found to correlate with changes in surface shear. (Author).
The Symposium on Swimming and Flying in Nature which was held at the California Institute of Technology, Pasadena, California from July 8-12, 1974 was conceived with the objective of providing an interdisciplinary forum for the discussion of funda mental biological and fluid mechanical aspects of these forms of natura110comotion. It was the earnest hope of all concerned in the organization of the Symposium that the exchange of knowledge and interaction of ideas from the disciplines involved would stimu late new research in this developing field. If the liveliness of the discussion generated among the 250 or so participants is any measure, then this objective was fulfilled to a significant degree. These two companion volumes contain the manuscripts of the papers presented during the Symposium. It is hoped that this permanent record will serve to perpetuate the enthusiasm and active thought generated during those days in Pasadena. The first volume contains the proceedings of the first two days of the confer ence (Sessions I to IV) which concentrated on the locomotion of micro-organisms. The second volume (Sessions V to VIII) deals with the propulsion of larger fish, insects and birds. Professor Sir James Lighthill's Special Invited Lecture which opened the Symposium is contained in the second volume, rather than the first, since it deals with natural flight.