Download Free Double Affine Hecke Algebras And Macdonalds Operators Book in PDF and EPUB Free Download. You can read online Double Affine Hecke Algebras And Macdonalds Operators and write the review.

This is an essentially self-contained monograph in an intriguing field of fundamental importance for Representation Theory, Harmonic Analysis, Mathematical Physics, and Combinatorics. It is a major source of general information about the double affine Hecke algebra, also called Cherednik's algebra, and its impressive applications. Chapter 1 is devoted to the Knizhnik-Zamolodchikov equations attached to root systems and their relations to affine Hecke algebras, Kac-Moody algebras, and Fourier analysis. Chapter 2 contains a systematic exposition of the representation theory of the one-dimensional DAHA. It is the simplest case but far from trivial with deep connections in the theory of special functions. Chapter 3 is about DAHA in full generality, including applications to Macdonald polynomials, Fourier transforms, Gauss-Selberg integrals, Verlinde algebras, and Gaussian sums. This book is designed for mathematicians and physicists, experts and students, for those who want to master the double Hecke algebra technique. Visit http://arxiv.org/math.QA/0404307 to read Chapter 0 and selected topics from other chapters.
First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.
The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA always admit a faithful action by auto-morphisms of a finite index subgroup of the Artin group of type A2, which descends to a faithful outer action of a congruence subgroup of SL(2, Z)or PSL(2, Z). This was previously known only in some special cases and, to the best of our knowledge, not even conjectured to hold in full generality. It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying semisimple data and, to a large extent, even by adjoint data; we prove our main result by reduction to the adjoint case. Adjoint DAAG/DAHA correspond in a natural way to affine Lie algebras, or more precisely to their affinized Weyl groups, which are the semi-direct products W 􀀁 Q∨ of the Weyl group W with the coroot lattice Q∨. They were defined topologically by van der Lek, and independently, algebraically, by Cherednik. We now describe our results for the adjoint case in greater detail. We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type A2,B2,G2 act by automorphisms on the adjoint DAAG/DAHA associated to affine Lie algebras of twist number r =1, 2, 3, respec-tively. This extends a fundamental result of Cherednik for r =1. We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup Γ1(r). In particular, Γ1(r) acts naturally on the set of isomorphism classes of representations of an adjoint DAAG/DAHA of twist number r, giving rise to a projective representation of Γ1(r)on the spaceof aΓ1(r)-stable representation. We also provide a classification of the involutions of Kazhdan-Lusztig type that appear in the context of these actions.
This is an essentially self-contained monograph centered on the new double Hecke algebra technique.
The subject of symmetric functions began with the work of Jacobi, Schur, Weyl, Young and others on the Schur polynomials. In the 1950's and 60's, far-reaching generalizations of Schur polynomials were obtained by Hall and Littlewood (independently) and, in a different direction, by Jack. In the 1980's, Macdonald unified these developments by introducing a family of polynomials associated with arbitrary root systems. The last twenty years have witnessed considerable progress in this area, revealing new and profound connections with representation theory, algebraic geometry, combinatorics, special functions, classical analysis and mathematical physics. All these fields and more are represented in this volume, which contains the proceedings of a conference on Jack, Hall-Littlewood and Macdonald polynomials held at ICMS, Edinburgh, during September 23-26, 2003. of historical material, including brief biographies of Hall, Littlewood, Jack and Macdonald; the original papers of Littlewood and Jack; notes on Hall's work by Macdonald; and a recently discovered unpublished manuscript by Jack (annotated by Macdonald). The book will be invaluable to students and researchers who wish to learn about this beautiful and exciting subject.
Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics.
Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program
This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
This is the first volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: R. Ahlswede, V. Bach, V. Baladi, J. Bruna, N. Burq, X. Cabré, P.J. Cameron, Z. Chatzidakis, C. Ciliberto, G. Dal Maso, J. Denef, R. Dijkgraaf, B. Fantechi, H. Föllmer, A.B. Goncharov, A. Grigor'yan, M. Harris, R. Iturriaga, K. Johansson, K. Khanin, P. Koskela, H.W. Lenstra, Jr., F. Loeser, Y.I. Manin, N.S. Manton, Y. Meyer, I. Moerdijk, E.M. Opdam, T. Peternell, B.M.A.G. Piette, A. Reznikov, H. Schlichtkrull, B. Schmidt, K. Schmidt, C. Simó, B. Tóth, E. van den Ban, M.-F. Vignéras, O. Viro.
This new book presents research in orthogonal polynomials and special functions. Recent developments in the theory and accomplishments of the last decade are pointed out and directions for research in the future are identified. The topics covered include matrix orthogonal polynomials, spectral theory and special functions, Asymptotics for orthogonal polynomials via Riemann-Hilbert methods, Polynomial wavelets and Koornwinder polynomials.