Download Free Doppler Radar Physiological Sensing Book in PDF and EPUB Free Download. You can read online Doppler Radar Physiological Sensing and write the review.

Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications. Explains pros and cons of different Doppler radar architectures, including CW, FMCW, and pulsed Doppler radar Discusses nonlinear demodulation methods, explaining dc offset, dc information, center tracking, and demodulation enabled by dc cancellation Reviews advanced system architectures that address issues of dc offset, spectrum folding, motion interference, and range resolution Covers Doppler radar physiological measurements demonstrated to date, from basic cardiopulmonary rate extractions to more involved volume assessments Doppler Radar Physiological Sensing serves as a fundamental reference for radar, biomedical, and microwave engineers as well as healthcare professionals interested in remote physiological monitoring methods.
This book explains the principles and techniques of microwave physiological sensing and introduces fundamental results of the noninvasive sensing of physiological signatures, vital signs, as well as life detection. Specifically, noninvasive microwave techniques for contact, contactless, and remote sensing of circulatory and respiratory movements and physiological volume changes are discussed. Noninvasive Physiological Measurement: Wireless Microwave Sensing, is written by a pioneering researcher in microwave noninvasive physiological sensing and leading global expert in microwaves in biology and medicine. The book reviews current advances in noninvasive cardiopulmonary sensing technology and measurement. It includes measurements of the vital signs and physiological signatures from laboratory and clinical testing. The book discusses the applicable domains and scenarios in which there is an interaction of radio frequency (RF) and microwaves with biological matter in gas, fluid, or solid form, both from inside and outside of the human or animal body. The book also provides examples for healthcare monitoring and diagnostic applications through wearables, devices, or remote contactless sensors for physiological signals and signature, vital signs, and body motion sensing. This book is an essential guide to understanding the human body’s interaction with microwaves and noninvasive physiological sensing and monitoring. This book is intended for researchers and professionals in biomedical, electrical, and computer engineering with an interest in antenna, sensors, microwaves, signal processing, and medical applications. It will also be of interest to healthcare professionals, technologists, and practitioners interested in noninvasive physiological sensing and patient monitoring.
This book brings together the latest research achievements from signal processing and related disciplines, consolidating existing and proposed directions in DSP-based knowledge extraction and information fusion. The book includes contributions presenting both novel algorithms and existing applications, emphasizing on-line processing of real-world data. Readers discover applications that solve biomedical, industrial, and environmental problems.
This book serves as the first guideline of the integrative approach, optimal for our new and young generations. Recent technology advancements in computer vision, IoT sensors, and analytics open the door to highly impactful innovations and applications as a result of effective and efficient integration of those. Such integration has brought to scientists and engineers a new approach —the integrative approach. This offers far more rapid development and scalable architecting when comparing to the traditional hardcore developmental approach. Featuring biomedical and healthcare challenges including COVID-19, we present a collection of carefully selective cases with significant added- values as a result of integrations, e.g., sensing with AI, analytics with different data sources, and comprehensive monitoring with many different sensors, while sustaining its readability.
In the past decades, interdisciplinary investigations overlapping biology, medicine, information science, and engineering have formed a very exciting and active field that attracts scientists, medical doctors, and engineers with knowledge in different domains. A few examples of such investigations include neural prosthetic implants that aim to improve the quality of life for patients suffering from neurologic disease and injury; brain machine interfaces that sense, analyze, and translate electrical signals from the brain to build closed-loop, biofeedback systems; and fundamental studies of intelligence, cognitive functions, and psychological behaviors correlated to their neurological basis. Although this interdisciplinary area is still in its infancy, it can potentially create some of the most significant impact: treating diseases that are considered untreatable, interpretation and communication of neuron ensembles, or even a revolutionary perception and understanding of life different from philosophical or immaterial approaches. Fortunately, several academic societies recognize the value and impact of this growing field, firmly supporting related research. Such support will drive a booming future in the next twenty or thirty years. Research in this area is frequently project-driven, and the generated knowledge has been scattered in different fields of neuroscience, computation, material and technology, circuits and system, clinical reports, and psychology—the scope considerably across the boundary of traditionally defined disciplines. Neural Computation, Neural Devices, and Neural Prosthesis is intended to assemble such knowledge, from there suggesting a systematic approach guiding future educational and research activities. The targeted audience includes both students and researchers.
This book presents a selection of papers from the 2017 World Conference on Information Systems and Technologies (WorldCIST'17), held between the 11st and 13th of April 2017 at Porto Santo Island, Madeira, Portugal. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges involved in modern Information Systems and Technologies research, together with technological developments and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Software and Systems Modeling; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Human–Computer Interaction; Ethics, Computers & Security; Health Informatics; Information Technologies in Education; and Information Technologies in Radiocommunications.
Innovation in healthcare is currently a “hot” topic. Innovation allows us to think differently, to take risks and to develop ideas that are far better than existing solutions. Currently, there is no single book that covers all topics related to microelectronics, sensors, data, system integration and healthcare technology assessment in one reference. This book aims to critically evaluate current state-of-the-art technologies and provide readers with insights into developing new solutions. With contributions from a fully international team of experts across electrical engineering and biomedical fields, the book discusses how advances in sensing technology, computer science, communications systems and proteomics/genomics are influencing healthcare technology today.
While conventional similar books focus on medical science and social aspects, this book emphasizes computing science and engineering design. This feature can help with both industry development and academic research. It book explains in detail both entire telehealthcare engineering system and individual hardware components. For example, it has circuit design details on ECG /EEG sensors. Highlighting basic principles and deep research development (R&D) details, the book focuses on two important design aspects: medical sensor design and medical signal processing. Their principles can be directly used for practical product design.
Vital signs, such as heart rate and respiration rate, are useful to health monitoring because they can provide important physiological insights for medical diagnosis and well-being management. Most traditional methods for measuring vital signs require a person to wear biomedical devices, such as a capnometer, a pulse oximeter, or an electrocardiogram sensor. These contact-based technologies are inconvenient, cumbersome, and uncomfortable to use. There is a compelling need for technologies that enable contact-free, easily deployable, and long-term monitoring of vital signs for healthcare. Contactless Vital Signs Monitoring presents a systematic and in-depth review on the principles, methodologies, and opportunities of using different wavelengths of an electromagnetic spectrum to measure vital signs from the human face and body contactlessly. The volume brings together pioneering researchers active in the field to report the latest progress made, in an intensive and structured way. It also presents various healthcare applications using camera and radio frequency-based monitoring, from clinical care to home care, to sport training and automotive, such as patient/neonatal monitoring in intensive care units, general wards, emergency department triage, MR/CT cardiac and respiratory gating, sleep centers, baby/elderly care, fitness cardio training, driver monitoring in automotive settings, and more. This book will be an important educational source for biomedical researchers, AI healthcare researchers, computer vision researchers, wireless-sensing researchers, doctors/clinicians, physicians/psychologists, and medical equipment manufacturers. - Includes various contactless vital signs monitoring techniques, such as optical-based, radar-based, WiFi-based, RFID-based, and acoustic-based methods. - Presents a thorough introduction to the measurement principles, methodologies, healthcare applications, hardware set-ups, and systems for contactless measurement of vital signs using camera or RF sensors. - Presents the opportunities for the fusion of camera and RF sensors for contactless vital signs monitoring and healthcare.