Download Free Domain Integral Methods For Computation Of Fracture Mechanics Parameters In Three Dimensional Functionally Graded Solids Book in PDF and EPUB Free Download. You can read online Domain Integral Methods For Computation Of Fracture Mechanics Parameters In Three Dimensional Functionally Graded Solids and write the review.

Scientific research on functionally graded materials (FGM's) looks at functions of gradients in materials comprising thermodynamic, mechanical, chemical, optical, electromagnetic, and/or biological aspects. This collection of technical papers represents current research interests with regard to the fracture behaviour of FGM's. The papers provide a balance between theoretical, computational, and experimental techniques. It also indicates areas for increased development, such as constraint effects, full experimental characterization of engineering FGM's under static and dynamic loading, development of fracture criteria with predictive capability, multiphysics and multiscale failure considerations, and connection of research with industrial applications.
Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.
This book describes the basics and developments of the new XFEM approach to fracture analysis of composite structures and materials. It provides state of the art techniques and algorithms for fracture analysis of structures including numeric examples at the end of each chapter as well as an accompanying website which will include MATLAB resources, executables, data files, and simulation procedures of XFEM. The first reference text for the extended finite element method (XFEM) for fracture analysis of structures and materials Includes theory and applications, with worked numerical problems and solutions, and MATLAB examples on an accompanying website with further XFEM resources Provides a comprehensive overview of this new area of research, including a review of Fracture Mechanics, basic through to advanced XFEM theory, as well as current problems and applications Includes a chapter on the future developments in the field, new research areas and possible future applications of the method
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both recent references and seminal ones from the past. Since the background of the authors is in solid mechanics and mathematical physics, the presented BEM formulations are valid for many areas such as civil engineering, geophysics, material science and all others concerning elastic wave propagation through inhomogeneous and heterogeneous media. The material presented in this book is suitable for self-study. The book is written at a level suitable for advanced undergraduates or beginning graduate students in solid mechanics, computational mechanics and fracture mechanics.
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.