Download Free Do Numbers Exist Book in PDF and EPUB Free Download. You can read online Do Numbers Exist and write the review.

In this astonishing and profound work, an irreverent sleuth traces the riddleof existence from the ancient world to modern times.
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
In Do Numbers Exist? Peter van Inwagen and William Lane Craig take opposite sides on whether there are abstract objects, such as numbers and properties. Craig argues that there are no abstract objects, whereas Van Inwagen argues that there are. Their exchange explores various arguments about the existence and nature of abstract objects. They focus especially on whether our ordinary and scientific thought and talk commit us to abstract objects, surveying the options available to us and the objections each faces. The debate covers central problems and methods in metaphysics, and also delves into theological questions raised by abstract objects. Key Features: Showcases the presentation and defense of two points of view on the existence of abstract objects, from two of the world’s leading philosophers Presents definitions in an easily accessible form Provides frequent summaries of previously covered material Includes a glossary of all specialized vocabulary
The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.
“A fascinating book.” —James Ryerson, New York Times Book Review A Smithsonian Best Science Book of the Year Winner of the PROSE Award for Best Book in Language & Linguistics Carved into our past and woven into our present, numbers shape our perceptions of the world far more than we think. In this sweeping account of how the invention of numbers sparked a revolution in human thought and culture, Caleb Everett draws on new discoveries in psychology, anthropology, and linguistics to reveal the many things made possible by numbers, from the concept of time to writing, agriculture, and commerce. Numbers are a tool, like the wheel, developed and refined over millennia. They allow us to grasp quantities precisely, but recent research confirms that they are not innate—and without numbers, we could not fully grasp quantities greater than three. Everett considers the number systems that have developed in different societies as he shares insights from his fascinating work with indigenous Amazonians. “This is bold, heady stuff... The breadth of research Everett covers is impressive, and allows him to develop a narrative that is both global and compelling... Numbers is eye-opening, even eye-popping.” —New Scientist “A powerful and convincing case for Everett’s main thesis: that numbers are neither natural nor innate to humans.” —Wall Street Journal
A study of the cognitive science of mathematical ideas.
Geoffrey Hellman presents a detailed interpretation of mathematics as the investigation of structural possibilities, as opposed to absolute, Platonic objects. After dealing with the natural numbers and analysis, he extends his approach to set theory, and shows how to dispense with a fixed universe of sets. Finally, he addresses problems of application to the physical world.
With wit and clarity, the authors progress from simple arithmetic to calculus and non-Euclidean geometry. Their subjects: geometry, plane and fancy; puzzles that made mathematical history; tantalizing paradoxes; more. Includes 169 figures.
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.