Download Free Distributed Programming With Java Book in PDF and EPUB Free Download. You can read online Distributed Programming With Java and write the review.

This book shows how to build software in which two or more computers cooperate to produce results. It covers Java's RMI (Remote Method Invocation) facility, in addition to CORBA and strategies for developing a distributed framework. It pays attention to often-neglected issues such as protocol design, security, and bandwidth requirements.
Concurrent and Distributed Computing in Java addresses fundamental concepts in concurrent computing with Java examples. The book consists of two parts. The first part deals with techniques for programming in shared-memory based systems. The book covers concepts in Java such as threads, synchronized methods, waits, and notify to expose students to basic concepts for multi-threaded programming. It also includes algorithms for mutual exclusion, consensus, atomic objects, and wait-free data structures. The second part of the book deals with programming in a message-passing system. This part covers resource allocation problems, logical clocks, global property detection, leader election, message ordering, agreement algorithms, checkpointing, and message logging. Primarily a textbook for upper-level undergraduates and graduate students, this thorough treatment will also be of interest to professional programmers.
For programmers already familiar with Java, this book offers new techniques on how to develop distributed applications. Although it discusses four paradigms--low-level Sockets, Remote Method Invocation, CORBA, and Mobile Agents--this book does not favor any one of these technologies. It also allows the reader to judge the easiest approach for a particular domain of applications.
Java's rich, comprehensive networking interfaces make it an ideal platform for building today's networked, Internet-centered applications, components, and Web services. Now, two Java networking experts demystify Java's complex networking API, giving developers practical insight into the key techniques of network development, and providing extensive code examples that show exactly how it's done. David and Michael Reilly begin by reviewing fundamental Internet architecture and TCP/IP protocol concepts all network programmers need to understand, as well as general Java features and techniques that are especially important in network programming, such as exception handling and input/output. Using practical examples, they show how to write clients and servers using UDP and TCP; how to build multithreaded network applications; and how to utilize HTTP and access the Web using Java. The book includes detailed coverage of server-side application development; distributed computing development with RMI and CORBA; and email-enabling applications with the powerful JavaMail API. For all beginning to intermediate Java programmers, network programmers who need to learn to work with Java.
This book provides graduate students and practitioners with knowledge of the CORBA standard and practical experience of implementing distributed systems with CORBA's Java mapping. With tested code examples that will run immediately!
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
Explore the power of distributed computing to write concurrent, scalable applications in Java About This Book Make the best of Java 9 features to write succinct code Handle large amounts of data using HPC Make use of AWS and Google App Engine along with Java to establish a powerful remote computation system Who This Book Is For This book is for basic to intermediate level Java developers who is aware of object-oriented programming and Java basic concepts. What You Will Learn Understand the basic concepts of parallel and distributed computing/programming Achieve performance improvement using parallel processing, multithreading, concurrency, memory sharing, and hpc cluster computing Get an in-depth understanding of Enterprise Messaging concepts with Java Messaging Service and Web Services in the context of Enterprise Integration Patterns Work with Distributed Database technologies Understand how to develop and deploy a distributed application on different cloud platforms including Amazon Web Service and Docker CaaS Concepts Explore big data technologies Effectively test and debug distributed systems Gain thorough knowledge of security standards for distributed applications including two-way Secure Socket Layer In Detail Distributed computing is the concept with which a bigger computation process is accomplished by splitting it into multiple smaller logical activities and performed by diverse systems, resulting in maximized performance in lower infrastructure investment. This book will teach you how to improve the performance of traditional applications through the usage of parallelism and optimized resource utilization in Java 9. After a brief introduction to the fundamentals of distributed and parallel computing, the book moves on to explain different ways of communicating with remote systems/objects in a distributed architecture. You will learn about asynchronous messaging with enterprise integration and related patterns, and how to handle large amount of data using HPC and implement distributed computing for databases. Moving on, it explains how to deploy distributed applications on different cloud platforms and self-contained application development. You will also learn about big data technologies and understand how they contribute to distributed computing. The book concludes with the detailed coverage of testing, debugging, troubleshooting, and security aspects of distributed applications so the programs you build are robust, efficient, and secure. Style and approach This is a step-by-step practical guide with real-world examples.
Distributed Programming: Theory and Practice presents a practical and rigorous method to develop distributed programs that correctly implement their specifications. The method also covers how to write specifications and how to use them. Numerous examples such as bounded buffers, distributed locks, message-passing services, and distributed termination detection illustrate the method. Larger examples include data transfer protocols, distributed shared memory, and TCP network sockets. Distributed Programming: Theory and Practice bridges the gap between books that focus on specific concurrent programming languages and books that focus on distributed algorithms. Programs are written in a "real-life" programming notation, along the lines of Java and Python with explicit instantiation of threads and programs. Students and programmers will see these as programs and not "merely" algorithms in pseudo-code. The programs implement interesting algorithms and solve problems that are large enough to serve as projects in programming classes and software engineering classes. Exercises and examples are included at the end of each chapter with on-line access to the solutions. Distributed Programming: Theory and Practice is designed as an advanced-level text book for students in computer science and electrical engineering. Programmers, software engineers and researchers working in this field will also find this book useful.
Java RMI contains a wealth of experience in designing and implementing Java's Remote Method Invocation. If you're a novice reader, you will quickly be brought up to speed on why RMI is such a powerful yet easy to use tool for distributed programming, while experts can gain valuable experience for constructing their own enterprise and distributed systems. With Java RMI, you'll learn tips and tricks for making your RMI code excel. The book also provides strategies for working with serialization, threading, the RMI registry, sockets and socket factories, activation, dynamic class downloading, HTTP tunneling, distributed garbage collection, JNDI, and CORBA. In short, a treasure trove of valuable RMI knowledge packed into one book.
Complete, Hands-On Guide to Building Advanced Distributed Applications with Ruby Distributed programming techniques make applications easier to scale, develop, and deploy—especially in emerging cloud computing environments. Now, one of the Ruby community’s leading experts has written the first definitive guide to distributed programming with Ruby. Mark Bates begins with a simple distributed application, and then walks through an increasingly complex series of examples, demonstrating solutions to the most common distributed programming problems. Bates presents the industry’s most useful coverage of Ruby’s standard distributed programming libraries, DRb and Rinda. Next, he introduces powerful third-party tools, frameworks, and libraries designed to simplify Ruby distributed programming, including his own Distribunaut. If you’re an experienced Ruby programmer or architect, this hands-on tutorial and practical reference will help you meet any distributed programming challenge, no matter how complex. Coverage includes Writing robust, secure, and interactive applications using DRb—and managing its drawbacks Using Rinda to build applications with improved flexibility, fault tolerance, and service discovery Simplifying DRb service management with RingyDingy Utilizing Starfish to facilitate communication between distributed programs and to write MapReduce functions for processin large data sets Using Politics to customize the processes running on individual server instances in a cloud computing environment Providing reliable distributed queuing with the low-overhead Starling messaging server Implementing comprehensive enterprise messaging with RabbitMQ and Advanced Message Queuing Protocol (AMQP) Offloading heavyweight tasks with BackgrounDRb and DelayedJob