Download Free Distributed Optimization With Applications To Sensor Networks And Machine Learning Book in PDF and EPUB Free Download. You can read online Distributed Optimization With Applications To Sensor Networks And Machine Learning and write the review.

Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization.
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, including compressive sensing and sampling, distributed signal processing, and intelligent signal learning. Presenting recent research results of world-renowned sensing experts, the book is organized into three parts: Machine Learning—describes the application of machine learning and other AI principles in sensor network intelligence—covering smart sensor/transducer architecture and data representation for intelligent sensors Signal Processing—considers the optimization of sensor network performance based on digital signal processing techniques—including cross-layer integration of routing and application-specific signal processing as well as on-board image processing in wireless multimedia sensor networks for intelligent transportation systems Networking—focuses on network protocol design in order to achieve an intelligent sensor networking—covering energy-efficient opportunistic routing protocols for sensor networking and multi-agent-driven wireless sensor cooperation Maintaining a focus on "intelligent" designs, the book details signal processing principles in sensor networks. It elaborates on critical platforms for intelligent sensor networks and illustrates key applications—including target tracking, object identification, and structural health monitoring. It also includes a paradigm for validating the extent of spatiotemporal associations among data sources to enhance data cleaning in sensor networks, a sensor stream reduction application, and also considers the use of Kalman filters for attack detection in a water system sensor network that consists of water level sensors and velocity sensors.
Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes. - Provides a series of the latest results, including but not limited to, distributed cooperative and competitive optimization, machine learning, and optimal resource allocation - Presents the most recent advances in theory and applications of distributed optimization and machine learning, including insightful connections to traditional control techniques - Offers numerical and simulation results in each chapter in order to reflect engineering practice and demonstrate the main focus of developed analysis and synthesis approaches
This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.
As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
In an increasingly connected world, the term cyber-physical networks has been coined to refer to the communication among devices that is turning smart devices into smart (cooperating) systems. The distinctive feature of such systems is that significant advantage can be obtained if its interconnected, complex nature is exploited. Several challenges arising in cyber-physical networks can be stated as optimization problems. Examples are estimation, decision, learning and control applications. In cyber-physical networks, the goal is to design algorithms, based on the exchange of information among the processors, that take advantage of the aggregated computational power. Distributed Optimization for Smart Cyber-Physical Networks provides a comprehensive overview of the most common approaches used to design distributed optimization algorithms, together with the theoretical analysis of the main schemes in their basic version. It identifies and formalizes classes of problem set-ups that arise in motivating application scenarios. For each set-up, in order to give the main tools for analysis, tailored distributed algorithms in simplified cases are reviewed. Extensions and generalizations of the basic schemes are also discussed at the end of each chapter. Distributed Optimization for Smart Cyber-Physical Networks provides the reader with an accessible overview of the current research and gives important pointers towards new developments. It is an excellent starting point for research and students unfamiliar with the topic.
This book focuses on improving the performance (convergence rate, communication efficiency, computational efficiency, etc.) of algorithms in the context of distributed optimization in networked systems and their successful application to real-world applications (smart grids and online learning). Readers may be particularly interested in the sections on consensus protocols, optimization skills, accelerated mechanisms, event-triggered strategies, variance-reduction communication techniques, etc., in connection with distributed optimization in various networked systems. This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike.
This book constitutes the proceedings of the 21st International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2020, which took place in Shenzhen, China, during December 28-30, 2020. The 34 full papers included in this volume were carefully reviewed and selected from 109 submissions. They deal with parallel and distributed computing of networking and architectures, software systems and technologies, algorithms and applications, and security and privacy.
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.