Download Free Discovering Mathematics Book in PDF and EPUB Free Download. You can read online Discovering Mathematics and write the review.

The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.
The term "mathematics" usually suggests an array of familiar problems with solutions derived from well-known techniques. Discovering Mathematics: The Art of Investigation takes a different approach, exploring how new ideas and chance observations can be pursued, and focusing on how the process invariably leads to interesting questions that would never have otherwise arisen. With puzzles involving coins, postage stamps, and other commonplace items, students are challenged to account for the simple explanations behind perplexing mathematical phenomena. Elementary methods and solutions allow readers to concentrate on the way in which the material is explored, as well as on strategies for answers that aren't immediately obvious. The problems don't require the kind of sophistication that would put them out of reach of ordinary students, but they're sufficiently complex to capture the essential features of mathematical discovery. Complete solutions appear at the end.
Aufmann's DISCOVERING MATHEMATICS: A QUANTITATIVE REASONING APPROACH with WebAssign is designed for today's Quantitative Reasoning course. Focusing on topics relevant to students' lives and developing critical-thinking skills they can apply beyond the course, this text provides students with exactly what they need in an approachable, engaging and streamlined format. Flexible for all teaching models--from lecture, hybrid or fully online to flipped and active-learning environments--DISCOVERING MATHEMATICS: A QUANTITATIVE REASONING APPROACH will empower you to accomplish all your course objectives.
Based on the ontology and semantics of algebra, the computer algebra system Magma enables users to rapidly formulate and perform calculations in abstract parts of mathematics. Edited by the principal designers of the program, this book explores Magma. Coverage ranges from number theory and algebraic geometry, through representation theory and group theory to discrete mathematics and graph theory. Includes case studies describing computations underpinning new theoretical results.
In most mathematics textbooks, the most exciting part of mathematics - the process of invention and discovery - is completely hidden from the student. The aim of Knots and Surfaces is to change all that. Knots and Surfaces guides the reader through Euler's formula, one and two-sided surfaces, and knot theory using games and examples. By means of a series of carefully selected tasks, this book leads the reader on to discover some real mathematics. There are no formulas to memorize; no procedures to follow. This book is a guide to the mathematics - it starts you in the right direction and brings you back if you stray too far. Discovery is left to you. This book is aimed at undergraduates and those with little background knowledge of mathematics.
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
You are invited to join a fascinating journey of discovery, as Marcia Birken and Anne C. Coon explore the intersecting patterns of mathematics and poetry — bringing the two fields together in a new way. Setting the tone with humor and illustrating each chapter with countless examples, Birken and Coon begin with patterns we can see, hear, and feel and then move to more complex patterns. Number systems and nursery rhymes lead to the Golden Mean and sestinas. Simple patterns of shape introduce tessellations and concrete poetry. Fractal geometry makes fractal poetry possible. Ultimately, patterns for the mind lead to questions: How do mathematicians and poets conceive of proof, paradox, and infinity? What role does analogy play in mathematical discovery and poetic expression? The book will be of special interest to readers who enjoy looking for connections across traditional disciplinary boundaries. Discovering Patterns in Mathematics and Poetry features centuries of creative work by mathematicians, poets, and artists, including Fibonacci, Albrecht Dürer, M. C. Escher, David Hilbert, Benoit Mandelbrot, William Shakespeare, Edna St. Vincent Millay, Langston Hughes, E.E. Cummings, and many contemporary experimental poets. Original illustrations include digital photographs, mathematical and poetic models, and fractal imagery.
This book offers creative problem solving techniques designed to develop and inspire inventive skills in students. It presents an array of selected elementary themes from arithmetic, algebra, geometry, analysis and applied mathematics. Includes solutions to over 100 problems and hints for over 150 further problems and exercises.
Exploring Mathematics: Investigations with Functions is intended for a one- or two-term course in mathematics for college students majoring in the social sciences, English, history, music, art, education, or any of the other majors within liberal arts. The mathematics course of this scope, with an algebra prerequsite, is a popular selection for liberal arts students. This 9-chapter textbook offers modern applications of mathematics in the liberal arts as well as aesthetic features of this rich facet of history and ongoing advancement of human society. With a central theme around the use of the concept of functions, and the inclusion of unique topics and chapters, Exploring Mathematics enables students to explore the next level of mathematics. It attempts to answer the questions, "How does mathematics help us to better our society and understand the world around us?" and "What are some of the unifying ideas of mathematics?" The central theme helps to impress upon the student the feeling that mathematics is more than a disconnected potpourri of rules and tricks. Although it would be inappropriate to force a functional connection in every single section, the theme is used whenever possible to provide conceptual bridges between chapters. Developing the concept of a function augments the presentation of many topics in every chapter. The Text's Objectives: The author chose the topics based on meeting the specific NCTM curriculum standards to: 1. Strengthen estimation and computational skills. 2. Utilize algebraic concepts. 3. Emphasize problem-solving and reasoning. 4. Emphasize pattern and relationship recognition. 5. Highlight importance of units in measurement. 6. Highlight importance of the notion of a mathematical function. 7. Display mathematical connections to other disciplines.
Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is required, including an understanding of numbers and elementary geometry, but no calculus. Including numerous exercises, with hints provided, this textbook is suitable for self-study and use alongside lecture courses.