Download Free Digital Video Communications Book in PDF and EPUB Free Download. You can read online Digital Video Communications and write the review.

Bridging the gap between the video compression and communication communities, this unique volume provides an all-encompassing treatment of wireless video communications, compression, channel coding, and wireless transmission as a joint subject. WIRELESS VIDEO COMMUNICATIONS begins with relatively simple compression and information theoretical principles, continues through state-of-the-art and future concepts, and concludes with implementation-ready system solutions. This book's deductive presentation and broad scope make it essential for anyone interested in wireless communications. It systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems. It provides in a comprehensive manner "implementation-ready" overall system design and performance studies, giving cognizance to the contradictory design requirements of video quality, bit rate, delay, complexity error resilience, and other related system design aspects. Topics covered include information theoretical foundations block-based and convolutional channel coding very-low-bit-rate video codecs and multimode videophone transceivers high-resolution video coding using both proprietary and standard schemes CDMA/OFDM systems, third-generation and beyond adaptive video systems. WIRELESS VIDEO COMMUNICATIONS is a valuable reference for postgraduate researchers, system engineers, industrialists, managers and visual communications practitioners.
The hand is quicker than the eye. In many cases, so is digital video. Maintaining image quality in bandwidth- and memory-restricted environments is quickly becoming a reality as thriving research delves ever deeper into perceptual coding techniques, which discard superfluous data that humans cannot process or detect. Surveying the topic from a Human Visual System (HVS)-based approach, Digital Video Image Quality and Perceptual Coding outlines the principles, metrics, and standards associated with perceptual coding, as well as the latest techniques and applications. This book is divided broadly into three parts. First, it introduces the fundamental theory, concepts, principles, and techniques underlying the field, such as the basics of compression, HVS modeling, and coding artifacts associated with current well-known techniques. The next section focuses on picture quality assessment criteria; subjective and objective methods and metrics, including vision model based digital video impairment metrics; testing procedures; and international standards regarding image quality. Finally, practical applications come into focus, including digital image and video coder designs based on the HVS as well as post-filtering, restoration, error correction, and concealment techniques. The permeation of digital images and video throughout the world cannot be understated. Nor can the importance of preserving quality while using minimal storage space, and Digital Video Image Quality and Perceptual Coding provides the tools necessary to accomplish this goal. Instructors and lecturers wishing to make use of this work as a textbook can download a presentation of 786 slides in PDF format organized to augment the text. accompany our book (H.R. Wu and K.R. Rao, Digital Video Image Quality and Perceptual Coding, CRC Press (ISBN: 0-8247-2777-0), Nov. 2005) for lecturers or instructor to use for their classes if they use the book.
The compression schemes applied for the storage and transmission of digital video data leave content sensitive to transmission errors, information loss and quality degradation. Recent developments in error resilience techniques allow improved quality of service of video communication over a range of network platforms. Digital video communications, supported by the Internet, ATM networks and Broadband ISDN, have undergone significant development over the past few years. Emerging applications include videoconferencing, tele-medicine and distance learning. This leading edge text addresses the problems associated with the delivery and design of video communication services. * Presents a comprehensive overview of the principles and techniques employed in the improvement of the performance of video codecs in error prone environments * Provides a performance evaluation and comparison of video coding standards, MPEG-4, H.261 and H.263 * Outlines methods of video communication over mobile networks * Provides guidance on quality enhancement and the meeting Quality of Service (QoS) requirements for digital video communications * Accompanying CD-ROM containing video clips to illustrate the coding and error resilience technology described within the text A valuable resource for researchers and postgraduate students working with video communication technology, as well as practising electronic and communications engineers designing and implementing video communication systems and consultants working in the video, television, computing and communications industries.
Useful as a reference work, this book offers a good balance between theoretical concepts and practical solutions, with more rigorous formulation of certain problems such as motion estimation, sampling, basic coding theory. Provides an in-depth exposition of fundamental theory and techniques for video processing, including frequency domain characterization of video signals and visual perception, video sampling and format conversion, two dimensional and three dimensional motion estimation. Also presents techniques important for video communications, including video coding and error control, and up-to-date coverage on recent international standards on video communications. A chapter is devoted to video streaming over Internet and wireless networks, one of the most popular video communication applications. In addition, it discusses processing and communications of stereoscopic and multiview video. Practicing researchers and engineers.
This is a modern textbook on digital communications and is designed for senior undergraduate and graduate students, whilst also providing a valuable reference for those working in the telecommunications industry. It provides a simple and thorough access to a wide range of topics through use of figures, tables, examples and problem sets. The author provides an integrated approach between RF engineering and statistical theory of communications. Intuitive explanations of the theoretical and practical aspects of telecommunications help the reader to acquire a deeper understanding of the topics. The book covers the fundamentals of antennas, channel modelling, receiver system noise, A/D conversion of signals, PCM, baseband transmission, optimum receiver, modulation techniques, error control coding, OFDM, fading channels, diversity and combining techniques, MIMO systems and cooperative communications. It will be an essential reference for all students and practitioners in the electrical engineering field.
Introduction to Digital Communications explores the basic principles in the analysis and design of digital communication systems, including design objectives, constraints and trade-offs. After portraying the big picture and laying the background material, this book lucidly progresses to a comprehensive and detailed discussion of all critical elements and key functions in digital communications. - The first undergraduate-level textbook exclusively on digital communications, with a complete coverage of source and channel coding, modulation, and synchronization. - Discusses major aspects of communication networks and multiuser communications - Provides insightful descriptions and intuitive explanations of all complex concepts - Focuses on practical applications and illustrative examples. - A companion Web site includes solutions to end-of-chapter problems and computer exercises, lecture slides, and figures and tables from the text
This text provides an introduction to the analysis and design of digital communication systems. The third edition has been updated with a discussion of modern technological advances, providing coverage of such topics as digital modulation and demodulation techniques, source coding, channel coding and decoding, spread spectrum signals, channel equilization, multiuser communications, and modulation and coding for fading multipath channels. In addition, the book has been reorganized so that each chapter builds on previous material, begins with an introduction to the history and classification of channel models and reviews important topics in probability and stochastic processes.
This book tries to address different aspects and issues related to video and multimedia distribution over the heterogeneous environment considering broadband satellite networks and general wireless systems where wireless communications and conditions can pose serious problems to the efficient and reliable delivery of content. Specific chapters of the book relate to different research topics covering the architectural aspects of the most famous DVB standard (DVB-T, DVB-S/S2, DVB-H etc.), the protocol aspects and the transmission techniques making use of MIMO, hierarchical modulation and lossy compression. In addition, research issues related to the application layer and to the content semantic, organization and research on the web have also been addressed in order to give a complete view of the problems. The network technologies used in the book are mainly broadband wireless and satellite networks. The book can be read by intermediate students, researchers, engineers or people with some knowledge or specialization in network topics.
The only book available that integrates a realistic design approach with a theoretical approach! This outstanding new book focuses on the central theoretical and practical issues involved in modem design. The first half deals with the basic issues of base-band and passband data transmission and contains descriptions of applications to specific digital transmission systems. The second half specifically addresses design issues including timing and carrier recovery, channel characterization, adaptive equalization, and trellis coding. The author uses simulation programs in Matlab and C to help readers: * Determine the power spectral density of complex data encoding rules * Simulate the performance of passband data transmission techniques * Design and assess the performance of carrier recovery systems * Develop time domain models for a variety of channels * Design and assess the performance of adaptive equalizers * Use existing programs as the framework for creating simulation modules
The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study.