Download Free Digital Communication Techniques Book in PDF and EPUB Free Download. You can read online Digital Communication Techniques and write the review.

The rapid expansion of digital communications, particularly in the fields of TV and mobile telephones does not overide the need for a clear understanding of analogue frequencies. Moreover, analogue technology will play an important role in communications well into the 21st century.Covering the principles behind analogue and digital communication systems, this book takes a less mathematical approach than is often found at this level. It begins with basic principles such as information systems, data compression and error detection before moving on to more advanced topics such as Pulse Code Modulation systems and digital microwave systems. Data protocols are also given so that the reader can gain a good understanding of more complex communication systems. 'Analogue and Digital Communication Techniques' has been designed for students studying HND electronic communication courses but will also be useful to junior undergraduates on similar courses. Some knowledge of basic elctronics is assumed.
The four short years since Digital Communication over Fading Channels became an instant classic have seen a virtual explosion of significant new work on the subject, both by the authors and by numerous researchers around the world. Foremost among these is a great deal of progress in the area of transmit diversity and space-time coding and the associated multiple input-multiple output (MIMO) channel. This new edition gathers these and other results, previously scattered throughout numerous publications, into a single convenient and informative volume. Like its predecessor, this Second Edition discusses in detail coherent and noncoherent communication systems as well as a large variety of fading channel models typical of communication links found in the real world. Coverage includes single- and multichannel reception and, in the case of the latter, a large variety of diversity types. The moment generating function (MGF)-based approach for performance analysis, introduced by the authors in the first edition and referred to in literally hundreds of publications, still represents the backbone of the book's presentation. Important features of this new edition include: * An all-new, comprehensive chapter on transmit diversity, space-time coding, and the MIMO channel, focusing on performance evaluation * Coverage of new and improved diversity schemes * Performance analyses of previously known schemes in new and different fading scenarios * A new chapter on the outage probability of cellular mobile radio systems * A new chapter on the capacity of fading channels * And much more Digital Communication over Fading Channels, Second Edition is an indispensable resource for graduate students, researchers investigating these systems, and practicing engineers responsible for evaluating their performance.
There have been considerable developments in information and communication technology. This has led to an increase in the number of applications available, as well as an increase in their variability. As such, it has become important to understand and master problems related to establishing radio links, the layout and flow of source data, the power available from antennas, the selectivity and sensitivity of receivers, etc. This book discusses digital modulations, their extensions and environment, as well as a few basic mathematical tools. An understanding of degree level mathematics or its equivalent is a prerequisite to reading this book. Digital Communication Techniques is aimed at licensed professionals, engineers, Masters students and researchers whose field is in related areas such as hardware, phase-locked loops, voltage-controlled oscillators or phase noise.
Introduction to Digital Communications explores the basic principles in the analysis and design of digital communication systems, including design objectives, constraints and trade-offs. After portraying the big picture and laying the background material, this book lucidly progresses to a comprehensive and detailed discussion of all critical elements and key functions in digital communications. - The first undergraduate-level textbook exclusively on digital communications, with a complete coverage of source and channel coding, modulation, and synchronization. - Discusses major aspects of communication networks and multiuser communications - Provides insightful descriptions and intuitive explanations of all complex concepts - Focuses on practical applications and illustrative examples. - A companion Web site includes solutions to end-of-chapter problems and computer exercises, lecture slides, and figures and tables from the text
This supplement contains worked out solutions to the chapter end problem sets found in Digital Communication, Second Edition, ISBN 0-7923-9391-0.
This book primarily focuses on the design of analog and digital communication systems; and has been structured to cater to the second year engineering undergraduate students of Computer Science, Information Technology, Electrical Engineering and Electronics and Communication departments. For better understanding, the basics of analog communication systems are outlined before the digital communication systems section. The content of this book is also suitable for the students with little knowledge in communication systems. The book is divided into five modules for efficient presentation, and it provides numerous examples and illustrations for the detailed understanding of the subject, in a thorough manner.
Written by internationally recognized leaders in the field, this volume presents complete, comprehensive and modern coverage of the theory and practice of signal design and detection in digital communications. Based on the authors' vast industrial experience, it explores the basics as well as the state-of-the-art developments in both modulation and detection.
The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study.
A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.
Synchronization is a critical function in digital communications; its failures may have catastrophic effects on the transmission system performance. Furthermore, synchronization circuits comprehend such a large part of the receiver hardware that their implementation has a substantial impact on the overall costs. For these reasons design engineers are particularly concerned with the development of new and more efficient synchronization structures. Unfortunately, the advent of digital VLSI technology has radically affected modem design rules, to a point that most analog techniques employed so far have become totally obsolete. Although digital synchronization methods are well established by now in the literature, they only appear in the form of technical papers, often concentrating on specific performance or implementation issues. As a consequence they are hardly useful to give a unified view of an otherwise seemingly heterogeneous field. It is widely recognized that a fundamental understanding of digital synchronization can only be reached by providing the designer with a solid theoretical framework, or else he will not know where to adjust his methods when he attempts to apply them to new situations. The task of the present book is just to develop such a framework.