Download Free Digital Color Halftoning Book in PDF and EPUB Free Download. You can read online Digital Color Halftoning and write the review.

This guide is aimed at professionals in the field of digital colour imaging who want to understand the halftone process or design halftone equipment and processes for research and development purposes. It is also suitable as a textbook for undergraduates and graduates in printing and graphic arts.
Digital technology now enables unparalleled functionality and flexibility in the capture, processing, exchange, and output of color images. But harnessing its potential requires knowledge of color science, systems, processing algorithms, and device characteristics-topics drawn from a broad range of disciplines. One can acquire the requisite background with an armload of physics, chemistry, engineering, computer science, and mathematics books and journals- or one can find it here, in the Digital Color Imaging Handbook. Unprecedented in scope, this handbook presents, in a single concise and authoritative publication, the elements of these diverse areas relevant to digital color imaging. The first three chapters cover the basics of color vision, perception, and physics that underpin digital color imaging. The remainder of the text presents the technology of color imaging with chapters on color management, device color characterization, digital halftoning, image compression, color quantization, gamut mapping, computationally efficient transform algorithms, and color image processing for digital cameras. Each chapter is written by world-class experts and largely self-contained, but cross references between chapters reflect the topics' important interrelations. Supplemental materials are available for download from the CRC Web site, including electronic versions of some of the images presented in the book.
Physical reconstruction function. Tools for fourier analysis. Dithering with white noise. Clustered-dot ordered dither. Dispersed-dot ordered dither. Ordered dither on asymmetric grids. Dithering with blue noise. Concluding remarks. Glossary of principal symbols. References. Index.
The late 1980s, revolutionary advances in digital halftoning enabled inkjet printers to achieve much higher image fidelity. The rapid rate of progress has resulted in numerous breakthroughs scattered throughout the literature, rendering old technologies obsolete and renewing the need for a centralized source on the current state of the art. Entirely revised and updated, Modern Digital Halftoning, Second Edition provides an integrated and up-to-date treatment of stochastic halftoning and digital printing. Using full-color illustrations to enhance the text, this edition incorporates new topics as well as updated models, algorithms, and methods used to construct and improve the quality of green-noise, blue-noise, and multitone images. Following a review of various halftoning techniques, this edition now covers amplitude modulated dither arrays, adapting to human visual models, direct binary search, and handling stochastic moiré problems. It also presents a new chapter on lenticular printing, a means for printing color holographic images. An accompanying CD-ROM contains MATLAB® software files and illustrated examples employing algorithms, statistics, and other key concepts from the book. Documenting the development of digital printing since the first edition, Modern Digital Halftoning, Second Edition offers a well-rounded and accurate perspective on the technological capabilities of digital printing and provides all the necessary tools for continuing research in the field.
The late 1980s, revolutionary advances in digital halftoning enabled inkjet printers to achieve much higher image fidelity. The rapid rate of progress has resulted in numerous breakthroughs scattered throughout the literature, rendering old technologies obsolete and renewing the need for a centralized source on the current state of the art. Entirely revised and updated, Modern Digital Halftoning, Second Edition provides an integrated and up-to-date treatment of stochastic halftoning and digital printing. Using full-color illustrations to enhance the text, this edition incorporates new topics as well as updated models, algorithms, and methods used to construct and improve the quality of green-noise, blue-noise, and multitone images. Following a review of various halftoning techniques, this edition now covers amplitude modulated dither arrays, adapting to human visual models, direct binary search, and handling stochastic moiré problems. It also presents a new chapter on lenticular printing, a means for printing color holographic images. An accompanying CD-ROM contains MATLAB® software files and illustrated examples employing algorithms, statistics, and other key concepts from the book. Documenting the development of digital printing since the first edition, Modern Digital Halftoning, Second Edition offers a well-rounded and accurate perspective on the technological capabilities of digital printing and provides all the necessary tools for continuing research in the field.
A comprehensive treatment of various approaches to monochrome and digital halftoning. It describes ideal spatial and spectral characteristics of green- and blue-noise halftoning that provide patterns of visual appeal and computational complexity in a wide range of printing technologies. The book comes with a CD-ROM of algorithms and statistics with colour examples.
An explanation of colour technology for electronic imaging at the system level, including tools for colour image processing, tools for digital image processing that affect image quality, and applications.
Color Image Processing: Methods and Applications embraces two decades of extraordinary growth in the technologies and applications for color image processing. The book offers comprehensive coverage of state-of-the-art systems, processing techniques, and emerging applications of digital color imaging. To elucidate the significant progress in specialized areas, the editors invited renowned authorities to address specific research challenges and recent trends in their area of expertise. The book begins by focusing on color fundamentals, including color management, gamut mapping, and color constancy. The remaining chapters detail the latest techniques and approaches to contemporary and traditional color image processing and analysis for a broad spectrum of sophisticated applications, including: Vector and semantic processing Secure imaging Object recognition and feature detection Facial and retinal image analysis Digital camera image processing Spectral and superresolution imaging Image and video colorization Virtual restoration of artwork Video shot segmentation and surveillance Color Image Processing: Methods and Applications is a versatile resource that can be used as a graduate textbook or as stand-alone reference for the design and the implementation of various image and video processing tasks for cutting-edge applications. This book is part of the Digital Imaging and Computer Vision series.
In the third paper in this chapter, Mike Pratt provides an historical intro duction to solid modeling. He presents the development of the three most freqently used techniques: cellular subdivision, constructive solid modeling and boundary representation. Although each of these techniques devel oped more or less independently, today the designer's needs dictate that a successful system allows access to all of these methods. For example, sculptured surfaces are generally represented using a boundary represen tation. However, the design of a complex vehicle generally dictates that a sculptured surface representation is most efficient for the 'skin' while constructive solid geometry representation is most efficent for the inter nal mechanism. Pratt also discusses the emerging concept of design by 'feature line'. Finally, he addresses the very important problem of data exchange between solid modeling systems and the progress that is being made towards developing an international standard. With the advent of reasonably low cost scientific workstations with rea sonable to outstanding graphics capabilities, scientists and engineers are increasingly turning to computer analysis for answers to fundamental ques tions and to computer graphics for present~tion of those answers. Although the current crop of workstations exhibit quite impressive computational ca pability, they are still not capable of solving many problems in a reasonable time frame, e. g. , executing computational fluid dynamics and finite element codes or generating complex ray traced or radiosity based images. In the sixth chapter Mike Muuss of the U. S.