Download Free Diffusion In Polymer Solvent Systems Book in PDF and EPUB Free Download. You can read online Diffusion In Polymer Solvent Systems and write the review.

A proper understanding of diffusion and mass transfer theory is critical for obtaining correct solutions to many transport problems. Diffusion and Mass Transfer presents a comprehensive summary of the theoretical aspects of diffusion and mass transfer and applies that theory to obtain detailed solutions for a large number of important problems. Par
The CRC Handbook of Enthalpy Data of Polymer-Solvent Systems presents data that is as essential to the production, process design, and use of polymers as it is to understanding the physical behavior and intermolecular interactions in polymer solutions and in developing thermodynamic polymer models. Providing an all-encompassing collection
This work introduces the fundamental background necessary to understand polymer devolatilization. It elucidates the actual mechanisms by which the devolatilization of polymer melts progresses, and discusses virtually every type of devolatilization equipment available. The work also addresses devolatilization in various geometries and types of equipment, describing the use of falling strand, slit, single-screw, co-rotating and counter-rotating twin-screw devolatilization.
The Handbook of Pharmaceutical Controlled Release Technology reviews the design, fabrication, methodology, administration, and classifications of various drug delivery systems, including matrices, and membrane controlled reservoir, bioerodible, and pendant chain systems. Contains cutting-edge research on the controlled delivery of biomolecules! Discussing the advantages and limitations of controlled release systems, the Handbook of Pharmaceutical Controlled Release Technology covers oral, transdermal, parenteral, and implantable delivery of drugs discusses modification methods to achieve desired release kinetics highlights constraints of system design for practical clinical application analyzes diffusion equations and mathematical modeling considers environmental acceptance and tissue compatibility of biopolymeric systems for biologically active agents evaluates polymers as drug delivery carriers describes peptide, protein, micro-, and nanoparticulate release systems examines the cost, comfort, disease control, side effects, and patient compliance of numerous delivery systems and devices and more!
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
Examines various aspects of diffusion in polymers that are being quantitatively described and engineered--detailing the phenomenology of diffusion and outlining areas for future research. Emphasizing the importance of fundamental studies throughout.
This cutting-edge reference clearly explains pharmaceutical transport phenomena, demonstrating applications ranging from drug or nutrient uptake into vesicle or cell suspensions, drug dissolution and absorption across biological membranes, whole body kinetics, and drug release from polymer reservoirs and matrices to heat and mass transport in freeze-drying and hygroscopicity. Focuses on practical applications of drug delivery from a physical and mechanistic perspective, highlighting biological systems. Written by more than 30 international authorities in the field, Transport Processes in Pharmaceutical Systems discusses the crucial relationship between the transport process and thermodynamic factors analyzes the dynamics of diffusion at liquid-liquid, liquid-solid, and liquid-cultured cell interfaces covers prodrug design for improving membrane transport addresses the effects of external stimuli in altering some natural and synthetic polymer matrices examines properties of hydrogels, including synthesis, swelling degree, swelling kinetics, permeability, biocompatibility, and biodegradability presents mass transfer of drugs and pharmacokinetics based on mass balance descriptions and more! Containing over 1000 references and more than 1100 equations, drawings, photographs, micrographs, and tables, Transport Processes in Pharmaceutical Systems is a must-read resource for research pharmacists, pharmaceutical scientists and chemists, chemical engineers, physical chemists, and upper-level undergraduate and graduate students in these disciplines.
Multicomponent Diffusion discusses the multicomponent diffusion of the three phases of matter. The book is comprised of nine chapters that cover studies of multicomponent diffusion and mass transfer with an emphasis on the chemical characteristics responsible for multicomponent diffusion. Chapter 1 provides an introductory discourse about multicomponent diffusion. Chapter 2 discusses binary diffusion, while Chapter 3 covers multicomponent flux equation. The measurement of ternary diffusion and the estimation of ternary diffusion coefficients are also explained in the book. A chapter then covers the interacting systems, and the subsequent chapter talks about membranes without mobile carriers. The text also discusses carrier-containing membranes and the multicomponent mass transfer. The book will be of great use to researchers and professionals whose work requires a good understanding of multicomponent diffusion.
Created for engineers and students working with pure polymers and polymer solutions, this handbook provides up-to-date, easy to use methods to obtain specific volumes and phase equilibrium data. A comprehensive database for the phase equilibria of a wide range of polymer-solvent systems, and PVT behavior of pure polymers are given, as are accurate predictive techniques using group contributions and readily available pure component data. Two computer programs on diskettes are included. POLYPROG implements procedures given for prediction and correlation for specific volume of pure polymer liquids and calculation of vapor-liquid equilibria (VLE) of polymer solutions. POLYDATA provides an easy method of accessing the data contained in the many databases in the book. Both disks require a computer with a math coprocessor. This handbook is a valuable resource in the design and operation of many polymer processes, such as polymerization, devolatilization, drying, extrusion, and heat exchange. Special Details: Hardcover with Disks. Special offer: Purchase this book along with X-131, Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions and receive a 20 percent discount off the list or member price.
Addresses a Growing Need for the Development of Cellular and Porous Materials in IndustryBuilding blocks used by nature are motivating researchers to create bio-inspired cellular structures that can be used in the development of products for the plastic, food, and biomedical industry. Representing a unified effort by international experts, Biofoams