Download Free Diffractive Optics And Micro Optics Book in PDF and EPUB Free Download. You can read online Diffractive Optics And Micro Optics and write the review.

Proceedings of the 20th Course of the International School of Quantum Electronics held in Erice, Italy, November 14-24, 1996
This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.
Traditional macro-optics can be designed without complex design software tools. However, digital optics, especially wafer-scale micro-optics, require specific software and tools. There is often no analytical solution, and thus complex iterative optimization algorithms may be required. This book covers refractive and diffractive micro-optics, the iterative optimization process, and modeling and fabrication techniques crucial to this field. The ability to create hybrid systems capable of producing analog and digital functionality is also addressed.
Diffractive optics involves the manipulation of light using diffractive optical elements (DOEs). DOEs are being widely applied in such areas as telecommunications, electronics, laser technologies and biomedical engineering. Computer design of diffractive optics provides an authoritative guide to the principles and applications of computer-designed diffractive optics.The theoretical aspects underpinning diffractive optics are initially explored, including the main equations in diffraction theory and diffractive optical transformations. Application of electromagnetic field theory for calculating diffractive gratings and related methods in micro-optics are discussed, as is analysis of transverse modes of laser radiation and the formation of self-replicating multimode laser beams. Key applications of DOEs reviewed include geometrical optics approximation, scalar approximation and optical manipulation of micro objects, with additional consideration of multi-order DOEs and synthesis of DOEs on polycrystalline diamond films.With its distinguished editor and respected team of expert contributors, Computer design of diffractive optics is a comprehensive reference tool for professionals and academics working in the field of optical engineering and photonics. - Explores the theoretical aspects underpinning diffractive optics - Discusses key applications of diffractive optical elements - A comprehensive reference for professionals and academics in optical engineering and photonics
From optical fundamentals to advanced applications, this comprehensive guide to micro-optics covers all the key areas for those who need an in-depth introduction to micro-optic devices, technologies, and applications. Topics covered range from basic optics, optical materials, refraction, and diffraction, to micro-mirrors, micro-lenses, diffractive optics, optoelectronics, and fabrication. Advanced topics, such as tunable and nano-optics, are also discussed. Real-world case studies and numerous worked examples are provided throughout, making complex concepts easier to follow, whilst an extensive bibliography provides a valuable resource for further study. With exercises provided at the end of each chapter to aid and test understanding, this is an ideal textbook for graduate and advanced undergraduate students taking courses in optics, photonics, micro-optics, microsystems, and MEMs. It is also a useful self-study guide for research engineers working on optics development.
Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.
This text examines the technology behind the plethora of modern industrial and domestic technologies which incorporate micro-optics eg. CDs, cameras, automated manufacturing systems, mobile communications etc. It includes a simple but comprehensive introduction to micro-optical developments design, and an overview of fabrication and replication tec
"Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation--from the simplest 1D grating to the more complex multifunctional DOEs--and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer"--
Diffractive optical elements (DOEs) are becoming more and more widely used in a braod range of fields, including telecommunications, optical computing, consumer electronics, laser material processing and the biomedical sciences, to manipulate light through micro-optical systems. In order to get the most out of such DOEs, knowledge of the design process, fabrication, packaging in a particular system, and operation is required. Digital Diffractive Optics discusses in detail the design and simulation of DOEs, before considering the main fabrication techniques. The increasingly important CAD/CAM tool requirements for the production of DOEs are covered, and a chapter is devoted to the crucial area of systematic fabrication error compensation. Finally, the integration and use of DOEs in a number of different systems, including various opto-electronic and opto-mechanical systems, are discussed. Digital Diffractive Optics will be of great interest to all those involved in the fields of optical engineering and photonics. It presents a clear view of the whole process, from design to fabrication and application, without overstressing the, often complex, mathematics, and will thus be accessible to postgraduate students and those entering the field, as well as more experienced engineers and scientists.
It has been five years since the publication of the first edition of Microoptics Technology. In that time, optical technology has experienced an unparalleled burst of activity that has produced a body of significant real results that have advanced new materials, devices, and systems. Building on the foundation of the first edition, this comprehensive reference presents an introduction and review of the optics and methods of microoptic elements with particular emphasis on lenses and lens arrays. The author explores advances that emerged from the flurry of activity over the last five years. With two new chapters and another fully expanded, the book covers current and new methods of fabrication of microlenses, as well as refractive, GRIN, and diffractive methods. It also includes chapters on optical devices that utilize the microoptic fabrication methods, including micro-diffraction gratings and optical isolators, together with a discussion of a number of important applications. See what's new in the Second Edition: Coverage of negative refractive index materials Information on femto second laser interaction with materials Chapter on photonic crystal has been extensively expanded The first edition was the first resource to collect all microlens fabrication methods into a single volume. With more than 600 references, tables, equations, drawings, and photographs, Microoptics Technology, Second Edition replaces its predecessor as the gold standard reference in this field.