Download Free Differential Tensor Algebras And Their Module Categories Book in PDF and EPUB Free Download. You can read online Differential Tensor Algebras And Their Module Categories and write the review.

A detailed account of main results in the theory of differential tensor algebras.
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
A diverse collection of articles by leading experts in computational mathematics, written to appeal to established researchers and non-experts.
Markov chains and hidden Markov chains have applications in many areas of engineering and genomics. This book provides a basic introduction to the subject by first developing the theory of Markov processes in an elementary discrete time, finite state framework suitable for senior undergraduates and graduates. The authors then introduce semi-Markov chains and hidden semi-Markov chains, before developing related estimation and filtering results. Genomics applications are modelled by discrete observations of these hidden semi-Markov chains. This book contains new results and previously unpublished material not available elsewhere. The approach is rigorous and focused on applications.
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.
Presents the current state of knowledge in all aspects of two-dimensional homotopy theory. Useful for both students and experts.
Surveys of current research in logical aspects of computer science that apply finite and infinite model-theoretic methods.
Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience.
This is the second volume of a series of mainly expository articles on the arithmetic theory of automorphic forms. It forms a sequel to On the Stabilization of the Trace Formula published in 2011. The books are intended primarily for two groups of readers: those interested in the structure of automorphic forms on reductive groups over number fields, and specifically in qualitative information on multiplicities of automorphic representations; and those interested in the classification of I-adic representations of Galois groups of number fields. Langlands' conjectures elaborate on the notion that these two problems overlap considerably. These volumes present convincing evidence supporting this, clearly and succinctly enough that readers can pass with minimal effort between the two points of view. Over a decade's worth of progress toward the stabilization of the Arthur-Selberg trace formula, culminating in Ngo Bau Chau's proof of the Fundamental Lemma, makes this series timely.