Download Free Differential Equations Bifurcations And Chaos In Economics Book in PDF and EPUB Free Download. You can read online Differential Equations Bifurcations And Chaos In Economics and write the review.

Although the application of differential equations to economics is a vast and vibrant area, the subject has not been systematically studied; it is often treated as a subsidiary part of mathematical economics textbooks. This book aims to fill that void by providing a unique blend of the theory of differential equations and their exciting applications to dynamic economics. Containing not just a comprehensive introduction to the applications of the theory of linear (and linearized) differential equations to economic analysis, the book also studies nonlinear dynamical systems, which have only been widely applied to economic analysis in recent years. It provides comprehensive coverage of the most important concepts and theorems in the theory of differential equations in a way that can be understood by any reader who has a basic knowledge of calculus and linear algebra. In addition to traditional applications of the theory to economic dynamics, the book includes many recent developments in different fields of economics.
Although the application of differential equations to economics is a vast and vibrant area, the subject has not been systematically studied; it is often treated as a subsidiary part of mathematical economics textbooks. This book aims to fill that void by providing a unique blend of the theory of differential equations and their exciting applications to dynamic economics. Containing not just a comprehensive introduction to the applications of the theory of linear (and linearized) differential equations to economic analysis, the book also studies nonlinear dynamical systems, which have only been widely applied to economic analysis in recent years. It provides comprehensive coverage of the most important concepts and theorems in the theory of differential equations in a way that can be understood by any reader who has a basic knowledge of calculus and linear algebra. In addition to traditional applications of the theory to economic dynamics, the book includes many recent developments in different fields of economics.
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Mathematical Models in Economics is a component of Encyclopedia of Mathematical Sciences in which is part of the global Encyclopedia of Life Support Systems (EOLSS), an integrated compendium of twenty one Encyclopedias. This theme is organized into several different topics and introduces the applications of mathematics to economics. Mathematical economics has experienced rapid growth, generating many new academic fields associated with the development of mathematical theory and computer. Mathematics is the backbone of modern economics. It plays a basic role in creating ideas, constructing new theories, and empirically testing ideas and theories. Mathematics is now an integral part of economics. The main advances in modern economics are characterized by applying mathematics to various economic problems. Many of today's profound insights into economic problems could hardly be obtained without the help of mathematics. The concepts of equilibrium versus non-equilibrium, stability versus instability, and steady states versus chaos in the contemporary literature are difficult to explain without mathematics. The theme discusses on modern versions of some classical economic theories, taking account of balancing between significance of economic issues and mathematical techniques. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
What do economic chaos and uncertainties mean in rational or irrational economic theories? How do simple deterministic interactions among a few variables lead to unpredictable complex phenomena? Why is complexity of economies causing so many conflicts and confusions worldwide?This book provides a comprehensive introduction to recent developments of complexity theory in economics. It presents different models based on well-accepted economic mechanisms such as the Solow model, Ramsey model, and Lucas model. It is focused on presenting complex behaviors, such as business cycles, aperiodic motion, bifurcations, catastrophes, chaos, and hidden attractors, in basic economic models with nonlinear behavior. It shows how complex nonlinear phenomena are identified from various economic mechanisms and theories. These models demonstrate that the traditional or dominant economic views on evolution of, for instance, capitalism market, free competition, or Keynesian economics, are not generally valid. Markets are unpredictable and nobody knows with certainty the consequences of policies or other external factors in economic systems with simple interactions.
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
This is the substantially revised and restructured second edition of Ron Shone's successful advanced textbook Economic Dynamics. The book provides detailed coverage of dynamics and phase diagrams, including: quantitative and qualitative dynamic systems, continuous and discrete dynamics, linear and non-linear systems and single equation and systems of equations. It illustrates dynamic systems using Mathematica, Maple V and spreadsheets. It provides a thorough introduction to phase diagrams and their economic application and explains the nature of saddle path solutions. The second edition contains a new chapter on oligopoly and an extended treatment of stability of discrete dynamic systems and the solving of first-order difference equations. Detailed routines on the use of Mathematica and Maple are now contained in the body of the text, which now includes advice on the use of Excel and additional examples and exercises throughout. Supporting website contains solutions manual and learning tools.