Download Free Development Of Metalorganic Molecular Beam Epitaxy For The Growth Of Indium053 Gallium047 Arsenic Indium Phosphide Heterojunction Bipolar Transistors And Quantum Well Optoelectronic Devices Book in PDF and EPUB Free Download. You can read online Development Of Metalorganic Molecular Beam Epitaxy For The Growth Of Indium053 Gallium047 Arsenic Indium Phosphide Heterojunction Bipolar Transistors And Quantum Well Optoelectronic Devices and write the review.

Metalorganic molecular beam epitaxy (MOMBE) offers several potential advantages over molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) for the development of high-speed/reliability C-doped In$\rm\sb{0.53}Ga\sb{0.47}$As/InP heterojunction bipolar transistors (HBTs). Improvements in reproducibility of alloy composition and layer thickness for $\rm In\sb xGa\sb{1-x}As$ and InP, which are afforded by MOMBE relative to MBE, offer clear advantages for manufacturing. The potential for reduction of the H passivation of C acceptors and substrate temperature sensitivity of the alloy composition, using CCl$\sb4$ as the C source, offers advantages relative to MOCVD. However, the lack of an efficient gaseous n-type dopant source limits the potential for scalability of MOMBE. This thesis describes recent work on the development of MOMBE for the growth of C-doped $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ HBTs. Issues relevant to obtaining abrupt heterointerfaces, the development of a new gaseous Si dopant source, SiBr$\sb4$, and the sources of H passivation of C acceptors in C-doped $\rm In\sb{0.53}Ga\sb{0.47}As$ have been investigated. The use of a common Ta-baffled hydride cracker for the dissociation of AsH$\sb3$ and PH$\sb3$ at 950$\sp\circ$C was found to result in the generation of As$\sb2$, P$\sb2$, and H$\sb2$. However, severe group V memory effects were observed for P and As. Significantly faster switching was obtained, by using separate open Ta tube crackers. Single and multiple quantum well $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ heterostructures containing quantum wells as narrow as 10 A exhibit intense photoluminescence and ninth order satellite peaks in resolution x-ray diffraction rocking curves. SiBr$\sb4$ has been demonstrated as an extremely efficient gaseous Si doping source which is compatible with MOMBE. Net electron concentrations of n = $\rm2.3\times10\sp{20}\ cm\sp{-3}$ have been obtained in InP grown at 450$\sp\circ$C without morphology degradation. Specific contact resistances of $\rm\rho\sb c=6\times10\sp{-8}\ \Omega$-cm$\sp{2}$ have been obtained by using nonalloyed Ti/Pt/Au contacts directly to these heavily-doped InP layers. $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ HBTs using InP contact layers with comparably low specific contact resistances have been demonstrated. A blue shift in the photoluminescence peak energy of approximately 265 meV is observed for InP layers doped to n = $\rm7\times10\sp{19}\ cm\sp{-3}.$ Carbon doping of $\rm In\sb{0.53}Ga\sb{0.47}As$ in gas source molecular beam epitaxy and MOMBE using CCl$\sb4$ has been investigated. Net hole concentrations of p = $\rm1.8\times10\sp{20}\ cm\sp{-3}$ have been obtained with negligible H passivation for hole concentrations as high as p = $\rm8\times10\sp{19}\ cm\sp{-3}$. The degree of H passivation was found to be highly dependent on the AsH$\sb3$ cracking temperature with an enhanced effect at substrate temperatures ${
The book is a history of Molecular Beam Epitaxy (MBE) as applied to the growth of semiconductor thin films (note that it does not cover the subject of metal thin films). It begins by examining the origins of MBE, first of all looking at the nature of molecular beams and considering their application to fundamental physics, to the development of nuclear magnetic resonance and to the invention of the microwave MASER. It shows how molecular beams of silane (SiH4) were used to study the nucleation of silicon films on a silicon substrate and how such studies were extended to compound semiconductors such as GaAs. From such surface studies in ultra-high vacuum the technique developed into a method of growing high quality single crystal films of a wide range of semiconductors. Comparing this with earlier evaporation methods of deposition and with other epitaxial deposition methods such as liquid phase and vapour phase epitaxy (LPE and VPE). The text describes the development of MBE machines from the early âhome-madeâ variety to that of commercial equipment and show how MBE was gradually refined to produce high quality films with atomic dimensions. This was much aided by the use of various in-situ surface analysis techniques, such as reflection high energy electron diffraction (RHEED) and mass spectrometry, a feature unique to MBE. It looks at various modified versions of the basic MBE process, then proceed to describe their application to the growth of so-called âlow-dimensional structuresâ (LDS) based on ultra-thin heterostructure films with thickness of order a few molecular monolayers. Further chapters cover the growth of a wide range of different compounds and describe their application to fundamental physics and to the fabrication of electronic and opto-electronic devices. The authors study the historical development of all these aspects and emphasise both the (often unexpected) manner of their discovery and development and the unique features which MBE brings to the growth of extremely complex structures with monolayer accuracy.
The first book to present a unified treatment of hybrid source MBE and metalorganic MBE. Since metalorganic MBE permits selective area growth, the latest information on its application to the INP/GaInAs(P) system is presented. This system has been highlighted because it is one of rising importance, vital to optical communications systems, and has great potential for future ultra-highspeed electronics. The use of such analytical methods as high resolution x-ray diffraction, secondary ion mass spectroscopy, several photoluminescence methods, and the use of active devices for materials evaluation is shown in detail.
Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semiconductor surface and crystal physics is also considered. This book is comprised of eight chapters and opens with an overview of MBE as a crystal growth technique. The discussion then turns to the deposition of semiconductor superlattices of GaAs by MBE; important factors that must be considered in the design of a MBE system such as flux uniformity, crucible volume, heat shielding, source baffling, and shutters; and control of stoichiometry deviation in MBE growth of compound semiconductors, along with the effects of such deviation on the electronic properties of the grown films. The following chapters focus on the use of MBE techniques for growth of IV-VI optoelectronic devices; for fabrication of integrated optical devices; and for the study of semiconductor surface and crystal physics. The final chapter examines a superlattice consisting of a periodic sequence of ultrathin p- and n-doped semiconductor layers, possibly with intrinsic layers in between. This monograph will be of interest to chemists, physicists, and crystallographers.
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and ‘how to’ on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. Condenses the fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
The NATO Advanced Study Institute on "Molecular Beam Epitaxy (MBE) and Heterostructures" was held at the Ettore Majorana Center for Scientific Culture, Erice, Italy, on March 7-19, 1983, the second course of the International School of Solid-State Device Re search. This volume contains the lectures presented at the Institute. Throughout the history of semiconductor development, the coupling between processing techniques and device structures for both scientific investigations and technological applications has time and again been demonstrated. Newly conceived ideas usually demand the ultimate in existing techniques, which often leads to process innova tions. The emergence of a process, on the other hand, invariably creates opportunities for device improvement and invention. This intimate relationship between the two has most recently been witnessed in MBE and heterostructures, the subject of this Institute. This volume is divided into several sections. Chapter 1 serves as an introduction by providing a perspective of the subject. This is followed by two sections, each containing four chapters, Chapters 2-5 addressing the principles of the MBE process and Chapters 6-9 describ ing its use in the growth of a variety of semiconductors and heteros tructures. The next two sections, Chapters to-II and Chapters 12-15, treat the theory and the electronic properties of the heterostructures, respectively. The focus is on energy quantization of the two dimensional electron system. Chapters 16-17 are devoted to device structures, including both field-effect transistors and lasers and detec tors.
This first-ever monograph on molecular beam epitaxy (MBE) gives a comprehensive presentation of recent developments in MBE, as applied to crystallization of thin films and device structures of different semiconductor materials. MBE is a high-vacuum technology characterized by relatively low growth temperature, ability to cease or initiate growth abruptly, smoothing of grown surfaces and interfaces on an atomic scale, and the unique facility for in situ analysis of the structural parameters of the growing film. The excellent exploitation parameters of such MBE-produced devices as quantum-well lasers, high electron mobility transistors, and superlattice avalanche photodiodes have caused this technology to be intensively developed. The main text of the book is divided into three parts. The first presents and discusses the more important problems concerning MBE equipment. The second discusses the physico-chemical aspects of the crystallization processes of different materials (mainly semiconductors) and device structures. The third part describes the characterization methods which link the physical properties of the grown film or structures with the technological parameters of the crystallization procedure. Latest achievements in the field are emphasized, such as solid source MBE, including silicon MBE, gas source MBE, especially metalorganic MBE, phase-locked epitaxy and atomic-layer epitaxy, photoassisted molecular layer epitaxy and migration enhanced epitaxy.
In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.