Download Free Development Of Highly Efficient Bismuth Telluride Based Thermoelectric Materials Book in PDF and EPUB Free Download. You can read online Development Of Highly Efficient Bismuth Telluride Based Thermoelectric Materials and write the review.

In this study the Bi2TexSe3-x class of materials was optimized by CHI3 doping, preferred alignment of the crystallographic orientation, and lattice thermal conductivity minimization. The synthesis route included rocking furnace melting, energetic ball milling or melt spinning, and hot pressing with optimal parameters for the enhancement of ZT, over a wide range of temperatures.
Edited by the initiators of a priority research program funded by the German Science Foundation and written by an international team of key players, this is the first book to provide an overview of nanostructured thermoelectric materials -- putting the new developments into perspective alongside conventional thermoelectrics. As such, it reviews the current state of research on thermoelectric Bi2Te3 nanomaterials, covering advanced methods of materials synthesis, characterization of materials structures and thermoelectric properties, as well as advances in the theory and modeling of transport properties. Nanomaterials-based thermoelectric devices are also discussed with respect to their properties, their suitability for different energy generation applications, and in light of their commercialization potential. An outlook on the chances, challenges and future directions of research rounds off the book, giving a straightforward account of the fundamental and technical problems - plus ways to overcome them.
This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.
This volume: Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride contains a series of topical articles that were presented as invited lectures by prominent leaders in this field at a workshop held in Traverse City, Michigan in the summer of 2002. These articles place the state of the art, regarding design principles, candidate materials and systems and current advances in context and should serve as a useful source of insights into this field for both beginning students and practitioners alike.
Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power by the Seebeck effect and refrigeration by the Peltier effect. Thermoelectric generators are being used in increasing numbers to provide electrical power in medical, military, and deep space applications where combinations of their desirable properties outweigh their relatively high cost and low generating efficiency. In recent years there also has been an increase in the requirement for thermoelectric coolers (Peltier devices) for use in infrared detectors and in optical communications. Information on thermoelectrics is not readily available as it is widely scattered throughout the literature. The Handbook centralizes this information in a convenient format under a single cover. Sixty of the world's foremost authorities on thermoelectrics have contributed to this Handbook. It is comprised of fifty-five chapters, a number of which contain previously unpublished material. The contents are arranged in eight sections: general principles and theoretical considerations, material preparation, measurement of thermoelectric properties, thermoelectric materials, thermoelectric generation, generator applications, thermoelectric refrigeration, and applications of thermoelectric cooling. The CRC Handbook of Thermoelectrics has a broad-based scope. It will interest researchers, technologists, and manufacturers, as well as students and the well-informed, non-specialist reader.
This book presents and facilitates the interchange of new research and development results concerned with hot topics in thermoelectric generators (TEGs) research, development and production. Topics include prospective thermoelectric materials for manufacturing TEGs operating in low-, mid-, and high temperature ranges, thermal and mechanical degradation issues in prospective thermoelectric materials and TEG modules, theoretical study of novel inorganic and organic thermoelectric materials, novel methods and apparatus for measuring performance of thermoelectric materials and TEGs, and thermoelectric power generators simulation, modeling, design and practice.This book helps researchers tackle the challenges that still remain in creating cheap and effective TEGs and presents the latest trends and technologies in development and production of advanced thermoelectric generation devices. Provides a concentration of new research and development in the field of Thermoelectric energy generation; Facilitates the interchange of new ideas and results to react effectively to the challenges of Thermoelectric generators; Explains both the advancements and challenges in TEGs.
The search to replace the toxic lead telluride (PbTe) alloys for thermoelectric applications in power generation has led to intensive studies of other telluride-based chalcogenide semiconductors. In this context, the binary SnTe has re-emerged over the last years as a promising candidate due to its rock-salt structure and electronic valence band structure similar to PbTe. Indium is a particularly intriguing dopant for SnTe as it leads to the appearance of a resonant level and superconductivity. Another noteworthy chalcogenide semiconductor, InTe has been recently shown to harbor promising thermoelectric properties due to its remarkably very low lattice thermal conductivity. The lack of detailed studies of its transport properties makes this compound a promising area of research in the field of thermoelectrics. In this work, we report on a detailed experimental and theoretical investigations of the transport properties of these two Te-based chalcogenides (XTe; X = Sn, In) in a wide range of temperatures (2 - 800 K). In a first part, the influence of indium on the transport properties of Sn1.03-xInxTe (0 ≤ x ≤ 40 %) is considered. The experimental results are supported by electronic band structure calculations performed using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA). Both experimental and theoretical results demonstrate the resonant nature of In in Sn1.03Te with an optimum doping level of 2% giving the highest thermopower value for this system. Low-temperature transport properties measurements further highlight the complex evolution of the transport properties for low In contents. Investigations performed on InTe were performed on both single-crystalline and polycrystalline samples. A large single crystal of InTe was grown by the vertical Bridgman method. The possibility to control the defect concentration in InTe was considered though the saturation annealing method, carried out on the In-rich and Te-rich side of the solidus. Comparable to the peak ZT of ~ 0.7 at 780 K achieved in single-crystalline InTe within the ab plane, a maximum ZT of ~ 0.9 at 710 K was obtained in polycrystalline InTe.
Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.