Download Free Development Of Computational Tools For Modeling Engine Fuel Economy And Emissions Book in PDF and EPUB Free Download. You can read online Development Of Computational Tools For Modeling Engine Fuel Economy And Emissions and write the review.

The matters discussed and presented in the chapters of this book cover a wide spectrum of topics and research methods commonly used in the field of engine combustion technology and vehicle functional systems. This book contains the results of both computational analyses and experimental studies on jet and reciprocating combustion engines as well heavy-duty onroad vehicles. Special attention is devoted to research and measures toward preventing the emission of harmful exhaust components, reducing fuel consumption or using unconventional methods of engine fueling or using renewable and alternative fuels in different applications. Some technical improvements in design and control of vehicle systems are also presented.
The volume is a collection of high-quality, peer-reviewed research papers presented at the Third International Conference on Mathematical Modeling and Computational Science (ICMMCS 2023), held during 24 – 25 February 2023 in hybrid mode. The topics covered in the book are mathematical logic and foundations, numerical analysis, neural networks, fuzzy set theory, coding theory, higher algebra, number theory, graph theory and combinatory, computation in complex networks, calculus, differential educations and integration, application of soft computing, knowledge engineering, machine learning, artificial intelligence, big data and data analytics, high performance computing, network and device security, Internet of Things (IoT).
Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.