Download Free Development Of A Pcr Free Direct Genomic Dna Detection Assay Using Rolling Circle Amplification Book in PDF and EPUB Free Download. You can read online Development Of A Pcr Free Direct Genomic Dna Detection Assay Using Rolling Circle Amplification and write the review.

This book provides a comprehensive look at the field of plant virus evolution. It is the first book ever published on the topic. Individual chapters, written by experts in the field, cover plant virus ecology, emerging viruses, plant viruses that integrate into the host genome, population biology, evolutionary mechanisms and appropriate methods for analysis. It covers RNA viruses, DNA viruses, pararetroviruses and viroids, and presents a number of thought-provoking ideas.
This book covers the latest developments in rolling circle amplification (RCA) technology with applications in clinical diagnostic tests and molecular medicine. Topics covered include new enzymes useful in RCA, techniques involving RCA for enhanced signal amplification, novel RCA diagnostics, sensors for expediting RCA detection, and prospective RCA-based therapeutics. This is a valuable book for university professors and students in the field of biomedical engineering and biomolecular pharmacology as well as R&D managers of biotechnology and biopharmaceutical companies. Specifically, this book: Reviews prospective RCA-based therapeutics, including RCA-derived DNA nanoparticles that strongly bind to cancer cells Expands readers’ understanding of sensor systems for expediting detection of RCA products by using probe-tagged magnetic nanobeads Maximizes reader insights into novel RCA diagnostics, such as PNA openers-assisted RCA for detection of single target cells and in situ RCA diagnosis of cancer cells and malignant tissues Presents innovative methods for quasi-exponential enhancement of RCA-generated signals, such as nicking enzyme-assisted cascade RCA and RCA coupled with loop-mediated amplification Advance Praise for Rolling Circle Amplification (RCA): “This book provides a badly needed compendium of innovative RCA methods and applications. It should help further increase the community of scientists that have employed RCA in research and diagnostic programs.”— Charles Cantor, Professor Emeritus of Biomedical Engineering, Boston University Executive Director, Retrotope Inc. (USA) “In this new book Vadim Demidov has assembled an enticing menu of articles that illustrate the evolution of the RCA field, including improved protein parts for building superior DNA nanomachines, enhanced modalities of amplification and detection, diagnostic applications, and even a sampling of potential therapeutic applications. The reader will appreciate that while RCA has come of age, there is no lack of exciting surprises, turns, and twists in the continuing evolution of the technology.”— Paul Lizardi, Professor of Pathology, Yale University School of Medicine (retired) Investigator, University of Granada, Spain, President, PetaOmics, Inc., San Marcos, Texas.
A rapid development in diverse areas of molecular biology and genetic engineering resulted in emergence of variety of tools. These tools are not only applicable to basic researches being carried out world over, but also exploited for precise detection of abnormal conditions in plants, animals and human body. Although a basic researcher is well versed with few techniques used by him/her in the laboratory, they may not be well acquainted with methodologies, which can be used to work out some of their own research problems. The picture is more blurred when the molecular diagnostic tools are to be used by physicians, scientists and technicians working in diagnostic laboratories in hospitals, industry and academic institutions. Since many of them are not trained in basics of these methods, they come across several gray areas in understanding of these tools. The accurate application of molecular diagnostic tools demands in depth understanding of the methodology for precise detection of the abnormal condition of living body. To meet the requirements of a good book on molecular diagnostics of students, physicians, scientists working in agricultural, veterinary, medical and pharmaceutical sciences, it needs to expose the reader lucidly to: Give basic science behind commonly used tools in diagnostics Expose the readers to detailed applications of these tools and Make them aware the availability of such diagnostic tools The book will attract additional audience of pathologists, medical microbiologists, pharmaceutical sciences, agricultural scientists and veterinary doctors if the following topics are incorporated at appropriate places in Unit II or separately as a part of Unit-III in the book. Molecular diagnosis of diseases in agricultural crops Molecular diagnosis of veterinary diseases. Molecular epidemiology, which helps to differentiate various epidemic strains and sources of disease outbreaks. Even in different units of the same hospital, the infections could be by different strains of the same species and the information becomes valuable for infection control strategies. Drug resistance is a growing problem for bacterial, fungal and parasitic microbes and the molecular biology tools can help to detect the drug resistance genes without the cultivation and in vitro sensitivity testing. Molecular diagnostics offers faster help in the selection of the proper antibiotic for the treatment of tuberculosis, which is a major problem of the in the developing world. The conventional culture and drug sensitivity testing of tuberculosis bacilli is laborious and time consuming, whereas molecular diagnosis offers rapid drug resistant gene detection even from direct clinical samples. The same approach for HIV, malaria and many more diseases needs to be considered. Molecular diagnostics in the detection of diseases during foetal life is an upcoming area in the foetal medicine in case of genetic abnormalities and infectious like TORCH complex etc. The book will be equally useful to students, scientists and professionals working in the field of molecular diagnostics.
PREFACE The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is involved in agricultural research and development and assists Member States of FAO and IAEA in improving strategies to ensure food security through the use of nuclear techniques and related biotechnologies, where such techniques have a valuable and often unique role. In particular, molecular diagnostic methods have rapidly evolved in the past twenty years, since the advent of the Polymerase Chain Reaction (PCR). They are used in a wide range of agricultural areas such as, improving soil and water management; producing better crop varieties; diagnosing plant and animal diseases; controlling insect pests and improving food quality and safety. The uses of nucleic acid-directed methods have increased significantly in the past five years and have made important contributions to disease control country programmes for improving national and international trade. These developments include the more routine use of PCR as a diagnostic tool in veterinary diagnostic laboratories. However, there are many problems associated with the transfer and particularly, the application of this technology. These include lack of consideration of: the establishment of quality-assured procedures, the required set-up of the laboratory and the proper training of staff. This can lead to a situation where results are not assured. This book gives a comprehensive account of the practical aspects of PCR and strong consideration is given to ensure its optimal use in a laboratory environment. This includes the setting-up of a PCR laboratory; Good Laboratory Practice and standardised of PCR protocols.
This book will serve as a primer for both laboratory and field scientists who are shaping the emerging field of molecular epidemiology. Molecular epidemiology utilizes the same paradigm as traditional epidemiology but uses biological markers to identify exposure, disease or susceptibility. Schulte and Perera present the epidemiologic methods pertinent to biological markers. The book is also designed to enumerate the considerations necessary for valid field research and provide a resource on the salient and subtle features of biological indicators.
In this new edition, the editors have thoroughly updated and dramatically expanded the number of protocols to take advantage of the newest technologies used in all branches of research and clinical medicine today. These proven methods include real time PCR, SNP analysis, nested PCR, direct PCR, and long range PCR. Among the highlights are chapters on genome profiling by SAGE, differential display and chip technologies, the amplification of whole genome DNA by random degenerate oligonucleotide PCR, and the refinement of PCR methods for the analysis of fragmented DNA from fixed tissues. Each fully tested protocol is described in step-by-step detail by an established expert in the field and includes a background introduction outlining the principle behind the technique, equipment and reagent lists, tips on trouble shooting and avoiding known pitfalls, and, where needed, a discussion of the interpretation and use of results.
This book focuses on the basic electrochemical applications of DNA in various areas, from basic principles to the most recent discoveries. The book comprises theoretical and experimental analysis of various properties of nucleic acids, research methods, and some promising applications. The topics discussed in the book include electrochemical detection of DNA hybridization based on latex/gold nanoparticle and nanotubes; nanomaterial-based electrochemical DNA detection; electrochemical detection of microorganism-based DNA biosensors; gold nanoparticle-based electrochemical DNA biosensors; electrochemical detection of the aptamer-target interaction; nanoparticle-induced catalysis for DNA biosensing; basic terms regarding electrochemical DNA (nucleic acids) biosensors; screen-printed electrodes for electrochemical DNA detection; application of field-effect transistors to label free electrical DNA biosensor arrays; and electrochemical detection of nucleic acids using branched DNA amplifiers.
Forensic Genetic Approaches for Identification of Human Skeletal Remains: Challenges, Best Practices, and Emerging Technologies provides best practices on processing bone samples for DNA testing. The book outlines forensic genetics tools that are available for the identification of skeletal remains in contemporary casework and historical/archaeological investigations. Although the book focuses primarily on the use of DNA for direct identification or kinship analyses, it also highlights complementary disciplines often used in concert with genetic data to make positive identifications, such as forensic anthropology, forensic odontology, and forensic art/sculpting. Unidentified human remains are often associated with tragic events, such as fires, terrorist attacks, natural disasters, war conflicts, genocide, airline crashes, homicide, and human rights violations under oppressive totalitarian regimes. In these situations, extensive damage to soft tissues often precludes the use of such biological samples in the identification process. In contrast, bone material is the most resilient, viable sample type for DNA testing. DNA recovered from bone often is degraded and in low quantities due to the effects of human decomposition, environmental exposure, and the passage of time. The complexities of bone microstructure and its rigid nature make skeletal remains one of the most challenging sample types for DNA testing. Provides best practices on processing bone samples for DNA testing Presents detailed coverage of proper facilities design for skeletal remains processing, selection of optimal skeletal elements for DNA recovery, specialized equipment needed, preparation and cleaning of bone samples for DNA extraction, and more Highlights complementary disciplines often used in concert with genetic data to make positive identifications, such as forensic anthropology, forensic odontology, and forensic art/sculpting