Download Free Development And Evaluation Of An Arterial Adaptive Traffic Signal Control System Using Reinforcement Learning Book in PDF and EPUB Free Download. You can read online Development And Evaluation Of An Arterial Adaptive Traffic Signal Control System Using Reinforcement Learning and write the review.

Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area. Recent Advances in Reinforcement Learning is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 22, Numbers 1, 2 and 3).
Arterial traffic signal control is a very important aspect of traffic management system. Efficient arterial traffic signal control strategy can reduce delay, stops, congestion, and pollution and save travel time. Commonly used pre-timed or traffic actuated signal control do not have the capability to fully respond to real-time traffic demand and pattern changes. Although some of the well-known adaptive control systems have shown advantageous over the traditional per-timed and actuated control strategies, their centralized architecture makes the maintenance, expansion, and upgrade difficult and costly.
The 2019 annual flagship conference of the IEEE Intelligent Transportation Systems Society will be held in Auckland, New Zealand This conference welcomes papers and presentations in the field of Intelligent Transportation Systems, dealing with new developments in theory, analysis, simulation and modelling, experimentation, demonstration, case studies, field operational tests and deployments ITSC 2019 particularly invites and encourages prospective authors to share their work, findings, perspectives and developments as related to implementation and deployment of advanced ITS applications
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 403: Adaptive Traffic Control Systems: Domestic and Foreign State of Practice explores the state of practice of adaptive traffic control systems (ATCSs), also known as real-time traffic control systems, which adjust, in real time, signal timings based on traffic conditions, demand, and system capacity --
This book focuses on modelling and simulation, control and optimization, signal processing, and forecasting in selected nonlinear dynamical systems, presenting both literature reviews and novel concepts. It develops analytical or numerical approaches, which are simple to use, robust, stable, flexible and universally applicable to the analysis of complex nonlinear dynamical systems. As such it addresses key challenges are addressed, e.g. efficient handling of time-varying dynamics, efficient design, faster numerical computations, robustness, stability and convergence of algorithms. The book provides a series of contributions discussing either the design or analysis of complex systems in sciences and engineering, and the concepts developed involve nonlinear dynamics, synchronization, optimization, machine learning, and forecasting. Both theoretical and practical aspects of diverse areas are investigated, specifically neurocomputing, transportation engineering, theoretical electrical engineering, signal processing, communications engineering, and computational intelligence. It is a valuable resource for students and researchers interested in nonlinear dynamics and synchronization with applications in selected areas.
The increasing complexity of our world demands new perspectives on the role of technology in decision making. Human decision making has its li- tations in terms of information-processing capacity. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and tra?c management, where humans need to engage in close collaborations with arti?cial systems to observe and understand the situation and respond in a sensible way. We believe that close collaborations between humans and arti?cial systems will become essential and that the importance of research into Interactive Collaborative Information Systems (ICIS) is self-evident. Developments in information and communication technology have ra- cally changed our working environments. The vast amount of information available nowadays and the wirelessly networked nature of our modern so- ety open up new opportunities to handle di?cult decision-making situations such as computer-supported situation assessment and distributed decision making. To make good use of these new possibilities, we need to update our traditional views on the role and capabilities of information systems. The aim of the Interactive Collaborative Information Systems project is to develop techniques that support humans in complex information en- ronments and that facilitate distributed decision-making capabilities. ICIS emphasizes the importance of building actor-agent communities: close c- laborations between human and arti?cial actors that highlight their comp- mentary capabilities, and in which task distribution is ?exible and adaptive.
The field of SMART technologies is an interdependent discipline. It involves the latest burning issues ranging from machine learning, cloud computing, optimisations, modelling techniques, Internet of Things, data analytics, and Smart Grids among others, that are all new fields. It is an applied and multi-disciplinary subject with a focus on Specific, Measurable, Achievable, Realistic & Timely system operations combined with Machine intelligence & Real-Time computing. It is not possible for any one person to comprehensively cover all aspects relevant to SMART Computing in a limited-extent work. Therefore, these conference proceedings address various issues through the deliberations by distinguished Professors and researchers. The SMARTCOM 2020 proceedings contain tracks dedicated to different areas of smart technologies such as Smart System and Future Internet, Machine Intelligence and Data Science, Real-Time and VLSI Systems, Communication and Automation Systems. The proceedings can be used as an advanced reference for research and for courses in smart technologies taught at graduate level.
How do we design a self-organizing system? Is it possible to validate and control non-deterministic dynamics? What is the right balance between the emergent patterns that bring robustness, adaptability and scalability, and the traditional need for verification and validation of the outcomes? The last several decades have seen much progress from original ideas of “emergent functionality” and “design for emergence”, to sophisticated mathematical formalisms of “guided self-organization”. And yet the main challenge remains, attracting the best scientific and engineering expertise to this elusive problem. This book presents state-of-the-practice of successfully engineered self-organizing systems, and examines ways to balance design and self-organization in the context of applications. As demonstrated in this second edition of Advances in Applied Self-Organizing Systems, finding this balance helps to deal with practical challenges as diverse as navigation of microscopic robots within blood vessels, self-monitoring aerospace vehicles, collective and modular robotics adapted for autonomous reconnaissance and surveillance, self-managing grids and multiprocessor scheduling, data visualization and self-modifying digital and analog circuitry, intrusion detection in computer networks, reconstruction of hydro-physical fields, traffic management, immunocomputing and nature-inspired computation. Many algorithms proposed and discussed in this volume are biologically inspired, and the reader will also gain an insight into cellular automata, genetic algorithms, artificial immune systems, snake-like locomotion, ant foraging, birds flocking, neuromorphic circuits, amongst others. Demonstrating the practical relevance and applicability of self-organization, Advances in Applied Self-Organizing Systems will be an invaluable tool for advanced students and researchers in a wide range of fields.