Download Free Developing Deep Knowledge In Middle School Mathematics Book in PDF and EPUB Free Download. You can read online Developing Deep Knowledge In Middle School Mathematics and write the review.

This textbook is for prospective teachers of middle school mathematics. It reflects on the authors’ experience in offering various mathematics education courses to prospective teachers in the US and Canada. In particular, the content can support one or more of 24-semester-hour courses recommended by the Conference Board of the Mathematical Sciences (2012) for the mathematical preparation of middle school teachers. The textbook integrates grade-appropriate content on all major topics in the middle school mathematics curriculum with international recommendations for teaching the content, making it relevant for a global readership. The textbook emphasizes the inherent connections between mathematics and real life, since many mathematical concepts and procedures stem from common sense, something that schoolchildren intuitively possess. This focus on teaching formal mathematics with reference to real life and common sense is essential to its pedagogical approach. In addition, the textbook stresses the importance of being able to use technology as an exploratory tool, and being familiar with its strengths and weaknesses. In keeping with this emphasis on the use of technology, both physical (manipulatives) and digital (commonly available educational software), it also explores e.g. the use of computer graphing software for digital fabrication. In closing, the textbook addresses the issue of creativity as a crucial aspect of education in the digital age in general, and in mathematics education in particular.
Imagine handling students state-by-state data on the number of gallons of soft drinks sold per person in one year. Imagine using it to lead a vibrant problem-solving session in which students energetically pose and answer mathematical questions: Why does it say sold instead of consumed? What is a soft drink? Is it the same as a soda? Who would collect this kind of data? Why would they collect it? How was gallons per person calculated? What was the total amount of soda sold in our state? How many 12-ounce cans is that? 20-ounce bottles? How many of each per person? Understanding Middle School Math gathers 50 cool problems like this that lead to deep thinking. Problems such as the Renovation Problem, in which students uncover ideas about how perimeter, area, length, and cost affect a construction project. Or Chocolate Algebra, where they discover linear relationships among the pocket money available to buy two differently priced chocolate candies. Arthur Hyde combines the latest research and decades of classroom experience to braid language, cognition, and math. His approach can help any student, including underprepared ones, with the rigors of math in middle school and beyond. He has created and adapted problems that strongly connect math to the real world, to students lives, and to prior knowledge. Problems that scaffold content and processes, and give students multiple entry points into learning. Every problem has been extensively field tested and refined by classroom teachers. And for each cool problem practicing middle school teachers describe how they used it to differentiate over a wide range of students and extend learning. For fantastic problems your students won't soon forget and teaching solutions that are exciting, substantial, and transformative, turn to Art Hyde. Read and use Understanding Middle School Math and pass your love of math on as you meet your classroom goals.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Develop a deep understanding of mathematics. This user-friendly resource presents grades 6–8 teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Make connections between elementary fraction-based content to fraction operations taught in the middle grades. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, and modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to grow as both learners and teachers of mathematics. Gain clarity about the most productive progression of mathematical teaching and learning for grades 6–8. Access short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction 1 Fraction Operations and Integer Concepts and Operations 2 Ratios and Proportional Relationships 3 Equations, Expressions, and Inequalities 4 Functions 5 Measurement and Geometry 6 Statistics and Probability Epilogue: Next Steps References and Resources Index
Minds-on Mathematics explains the core elements of math workshop and provides detailed strategies for implementing the workshop structure, including Lesson Openers that engage students,Minilessons that model thinking and problem solving.
Develop a deep understanding of mathematics. This user-friendly resource presents grades 3–5 teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Focus on an understanding of and procedural fluency with multiplication and division. Address how to learn and teach fraction concepts and operations with depth. Thoroughly teach plane and solid geometry. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, and modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Use charts and diagrams for classifying shapes, which can engage students in important mathematical practices. Access short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction 1 Place Value, Addition, and Subtraction 2 Multiplication and Division 3 Fraction Concepts 4 Fraction Operations 5 Geometry 6 Measurement Epilogue Next Steps Appendix A Completed Classification of Triangles Chart Appendix B Completed Diagram for Classifying Quadrilaterals
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.
Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index