Download Free Determining Thresholds Of Complete Synchronization And Application Book in PDF and EPUB Free Download. You can read online Determining Thresholds Of Complete Synchronization And Application and write the review.

This book is devoted to the phenomenon of synchronization and its application for determining the values of Lyapunov exponents. In recent years, the idea of synchronization has become an object of great interest in many areas of science, e.g., biology, communication or laser physics. Over the last decade, new types of synchronization have been identified and some interesting new ideas concerning the synchronization have also appeared. This book presents the complete synchronization problem rather than just results from the research. The problem is demonstrated in relation to a kind of coupling applied between dynamical systems, whereby a unique classification of possible couplings is introduced. Another novel feature is the connection presented between synchronization and the problem of determining the Lyapunov exponents, especially for non-differentiable systems. A detailed proposal of such an estimation method and examples of its application are included.
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular.
This book aims to propose the implementation and application of Fractional Order Systems (FOS). It is well known that FOS can be utilized in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductory chapters are included on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material will have applications in robotics, aerospace and biomedicine.
Chaos theory deals with the description of motion (in a general sense) which cannot be predicted in the long term although produced by deterministic system, as well exemplified by meteorological phenomena. It directly comes from the Lunar theory OCo a three-body problem OCo and the difficulty encountered by astronomers to accurately predict the long-term evolution of the Moon using OC NewtonianOCO mechanics. Henri Poincar(r)''s deep intuitions were at the origin of chaos theory. They also led the meteorologist Edward Lorenz to draw the first chaotic attractor ever published. But the main idea consists of plotting a curve representative of the system evolution rather than finding an analytical solution as commonly done in classical mechanics. Such a novel approach allows the description of population interactions and the solar activity as well. Using the original sources, the book draws on the history of the concepts underlying chaos theory from the 17th century to the last decade, and by various examples, show how general is this theory in a wide range of applications: meteorology, chemistry, populations, astrophysics, biomedicine, et
Summary: "As memristors are not yet on the market, the development of memristor emulators and memristor based circuits is very important for real and practical engineering applications. The objectives of this book are to review the basic concepts of the memristor, describe state-of-the-art memristor based circuits and to stimulate further research and development in this area."--Preface.
"This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions."--back cover.
This unprecedented book offers all the details of the mathematical mechanics underlying state-of-the-art modeling of skeletal muscle contraction. The aim is to provide an integrated vision of mathematics, physics, chemistry and biology for this one understanding. The method is to take advantage of modern mathematical technology — Eilenberg-Mac Lane category theory, Robinson infinitesimal calculus and Kolmogorov probability theory — to examine a succession of distinguishable universes of particles, and continuous, thermodynamic, chemical, and molecular bodies, all with a focus on proofs by algebraic calculation without set theory. Also provided are metaphors and analogies, and careful distinction between representational pictures, mental model drawings, and mathematical diagrams.High school mathematics teachers, undergraduate and graduate college students, and researchers in mathematics, physics, chemistry, and biology may use this integrated publication to broaden their perspective on science, and to experience the precision that mathematical mechanics brings to understanding the muscular mechanism of nearly all animal behavior.
1. Fundamentals of piecewise-smooth, continuous systems. 1.1. Applications. 1.2. A framework for local behavior. 1.3. Existence of equilibria and fixed points. 1.4. The observer canonical form. 1.5. Discontinuous bifurcations. 1.6. Border-collision bifurcations. 1.7. Poincaré maps and discontinuity maps. 1.8. Period adding. 1.9. Smooth approximations -- 2. Discontinuous bifurcations in planar systems. 2.1. Periodic orbits. 2.2. The focus-focus case in detail. 2.3. Summary and classification -- 3. Codimension-two, discontinuous bifurcations. 3.1. A nonsmooth, saddle-node bifurcation. 3.2. A nonsmooth, Hopf bifurcation. 3.3. A codimension-two, discontinuous Hopf bifurcation -- 4. The growth of Saccharomyces cerevisiae. 4.1. Mathematical model. 4.2. Basic mathematical observations. 4.3. Bifurcation structure. 4.4. Simple and complicated stable oscillations -- 5. Codimension-two, border-collision bifurcations. 5.1. A nonsmooth, saddle-node bifurcation. 5.2. A nonsmooth, period-doubling bifurcation -- 6. Periodic solutions and resonance tongues. 6.1. Symbolic dynamics. 6.2. Describing and locating periodic solutions. 6.3. Resonance tongue boundaries. 6.4. Rotational symbol sequences. 6.5. Cardinality of symbol sequences. 6.6. Shrinking points. 6.7. Unfolding shrinking points -- 7. Neimark-Sacker-like bifurcations. 7.1. A two-dimensional map. 7.2. Basic dynamics. 7.3. Limiting parameter values. 7.4. Resonance tongues. 7.5. Complex phenomena relating to resonance tongues. 7.6. More complex phenomena
1. Differential equations with random right-hand sides and impulsive effects. 1.1. An impulsive process as a solution of an impulsive system. 1.2. Dissipativity. 1.3. Stability and Lyapunov functions. 1.4. Stability of systems with permanently acting random perturbations. 1.5. Solutions periodic in the restricted sense. 1.6. Periodic solutions of systems with small perturbations. 1.7. Periodic solutions of linear impulsive systems. 1.8. Weakly nonlinear systems. 1.9. Comments and references -- 2. Invariant sets for systems with random perturbations. 2.1. Invariant sets for systems with random right-hand sides. 2.2. Invariant sets for stochastic Ito systems. 2.3. The behaviour of invariant sets under small perturbations. 2.4. A study of stability of an equilibrium via the reduction principle for systems with regular random perturbations. 2.5. Stability of an equilibrium and the reduction principle for Ito type systems. 2.6. A study of stability of the invariant set via the reduction principle. Regular perturbations. 2.7. Stability of invariant sets and the reduction principle for Ito type systems. 2.8. Comments and references -- 3. Linear and quasilinear stochastic Ito systems. 3.1. Mean square exponential dichotomy. 3.2. A study of dichotomy in terms of quadratic forms. 3.3. Linear system solutions that are mean square bounded on the semiaxis. 3.4. Quasilinear systems. 3.5. Linear system solutions that are probability bounded on the axis. A generalized notion of a solution. 3.6. Asymptotic equivalence of linear systems. 3.7. Conditions for asymptotic equivalence of nonlinear systems. 3.8. Comments and references -- 4. Extensions of Ito systems on a torus. 4.1. Stability of invariant tori. 4.2. Random invariant tori for linear extensions. 4.3. Smoothness of invariant tori. 4.4. Random invariant tori for nonlinear extensions. 4.5. An ergodic theorem for a class of stochastic systems having a toroidal manifold. 4.6. Comments and references -- 5. The averaging method for equations with random perturbations. 5.1. A substantiation of the averaging method for systems with impulsive effect. 5.2. Asymptotics of normalized deviations of averaged solutions. 5.3. Applications to the theory of nonlinear oscillations. 5.4. Averaging for systems with impulsive effects at random times. 5.5. The second theorem of M.M. Bogolyubov for systems with regular random perturbations. 5.6. Averaging for stochastic Ito systems. An asymptotically finite interval. 5.7. Averaging on the semiaxis. 5.8. The averaging method and two-sided bounded solutions of Ito systems. 5.9. Comments and references
A Physarum machine is a programmable amorphous biological computer experimentally implemented in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of attracting and repelling gradients. This book demonstrates how to create experimental Physarum machines for computational geometry and optimization, distributed manipulation and transportation, and general-purpose computation. Being very cheap to make and easy to maintain, the machine also functions on a wide range of substrates and in a broad scope of environmental conditions. As such a Physarum machine is a 'green' and environmentally friendly unconventional computer. The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon computers and robots. An account on Physarum Machines can be viewed at http: //www.youtube.com/user/PhysarumMachines.