Download Free Designing And Using Mathematical Tasks Book in PDF and EPUB Free Download. You can read online Designing And Using Mathematical Tasks and write the review.

Does being able to "do" mathematics mean being competent at techniques and understanding how ideas and techniques fit together? By being given appropriate tasks, learners develop their powers to think mathematically and learn to appreciate how ideas fit together. (Education/Teaching)
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* This open access book is the product of ICMI Study 22 Task Design in Mathematics Education. The study offers a state-of-the-art summary of relevant research and goes beyond that to develop new insights and new areas of knowledge and study about task design. The authors represent a wide range of countries and cultures and are leading researchers, teachers and designers. In particular, the authors develop explicit understandings of the opportunities and difficulties involved in designing and implementing tasks and of the interfaces between the teaching, researching and designing roles – recognising that these might be undertaken by the same person or by completely separate teams. Tasks generate the activity through which learners meet mathematical concepts, ideas, strategies and learn to use and develop mathematical thinking and modes of enquiry. Teaching includes the selection, modification, design, sequencing, installation, observation and evaluation of tasks. The book illustrates how task design is core to effective teaching, whether the task is a complex, extended, investigation or a small part of a lesson; whether it is part of a curriculum system, such as a textbook, or promotes free standing activity; whether the task comes from published source or is devised by the teacher or the student.
If we want our pupils to develop fluency, understanding and the ability to solve complex problems, then it is vital that teachers develop the ability to select, adapt and design appropriate mathematical tasks. In 'Mathematical Tasks: The Bridge Between Teaching and Learning', Chris McGrane and Mark McCourt a range of practical approaches, strategies and principles behind the design and effective use of tasks in the mathematics classroom that lead to all pupils becoming successful learners. First-hand interviews with world class mathematics education experts and practicing teachers bring to life the ideas behind how tasks can act as a bridge between what the teacher wants the pupil to make sense of and what the pupil actually does makes sense of; tasks are how we enable pupils to enact mathematics - it is only by being mathematical that pupils can truly make connections across mathematical ideas and understand the bigger picture. This is a book for classroom teachers. Chris McGrane offers a range of practical examples for nurturing deep learning in mathematics that can be adapted and embedded in one's own classroom practice. This is also a book for those who are interested in the theory behind tasks. Chris and his interviewees examine the key role tasks play in shaping learning, teaching, curriculum and assessment. Suitable for teachers at all stages in their careers and teachers are encouraged to return to the book from time to time over the years to notice how their use of tasks in the classroom changes as they themselves develop.
This book presents an international perspective on environmental educational and specifically the influence that context has on this aspect of curriculum. The focus is on environmental education both formal and non formal and the factors that impact upon its effectiveness, particularly in non-Western and non-English-speaking contexts (i.e., outside the UK, USA, Australia, NZ, etc. ).
This book is about the role and potential of using digital technology in designing teaching and learning tasks in the mathematics classroom. Digital technology has opened up different new educational spaces for the mathematics classroom in the past few decades and, as technology is constantly evolving, novel ideas and approaches are brewing to enrich these spaces with diverse didactical flavors. A key issue is always how technology can, or cannot, play epistemic and pedagogic roles in the mathematics classroom. The main purpose of this book is to explore mathematics task design when digital technology is part of the teaching and learning environment. What features of the technology used can be capitalized upon to design tasks that transform learners’ experiential knowledge, gained from using the technology, into conceptual mathematical knowledge? When do digital environments actually bring an essential (educationally, speaking) new dimension to classroom activities? What are some pragmatic and semiotic values of the technology used? These are some of the concerns addressed in the book by expert scholars in this area of research in mathematics education. This volume is the first devoted entirely to issues on designing mathematical tasks in digital teaching and learning environments, outlining different current research scenarios.
Detailed plans for helping elementary students experience deep mathematical learning Do you work tirelessly to make your math lessons meaningful, challenging, accessible, and engaging? Do you spend hours you don’t have searching for, adapting, and creating tasks to provide rich experiences for your students that supplement your mathematics curriculum? Help has arrived! Classroom Ready-Rich Math Tasks for Grades 4-5 details more than 50 research- and standards-aligned, high-cognitive-demand tasks that will have your students doing deep-problem-based learning. These ready-to-implement, engaging tasks connect skills, concepts and practices, while encouraging students to reason, problem-solve, discuss, explore multiple solution pathways, connect multiple representations, and justify their thinking. They help students monitor their own thinking and connect the mathematics they know to new situations. In other words, these tasks allow students to truly do mathematics! Written with a strengths-based lens and an attentiveness to all students, this guide includes: • Complete task-based lessons, referencing mathematics standards and practices, vocabulary, and materials • Downloadable planning tools, student resource pages, and thoughtful questions, and formative assessment prompts • Guidance on preparing, launching, facilitating, and reflecting on each task • Notes on access and equity, focusing on students’ strengths, productive struggle, and distance or alternative learning environments. With concluding guidance on adapting or creating additional rich tasks for your students, this guide will help you give all of your students the deepest, most enriching and engaging mathematics learning experience possible.
"Articles from Teaching children mathematics; Mathematics teaching in the middle school; Mathematics teacher; Student math notes; the 2001, 2002, and 2003 NCTM yearbooks; and Classroom activities for learning and teaching measurement."
This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking.
What is understanding and how does it differ from knowledge? How can we determine the big ideas worth understanding? Why is understanding an important teaching goal, and how do we know when students have attained it? How can we create a rigorous and engaging curriculum that focuses on understanding and leads to improved student performance in today's high-stakes, standards-based environment? Authors Grant Wiggins and Jay McTighe answer these and many other questions in this second edition of Understanding by Design. Drawing on feedback from thousands of educators around the world who have used the UbD framework since its introduction in 1998, the authors have greatly revised and expanded their original work to guide educators across the K-16 spectrum in the design of curriculum, assessment, and instruction. With an improved UbD Template at its core, the book explains the rationale of backward design and explores in greater depth the meaning of such key ideas as essential questions and transfer tasks. Readers will learn why the familiar coverage- and activity-based approaches to curriculum design fall short, and how a focus on the six facets of understanding can enrich student learning. With an expanded array of practical strategies, tools, and examples from all subject areas, the book demonstrates how the research-based principles of Understanding by Design apply to district frameworks as well as to individual units of curriculum. Combining provocative ideas, thoughtful analysis, and tested approaches, this new edition of Understanding by Design offers teacher-designers a clear path to the creation of curriculum that ensures better learning and a more stimulating experience for students and teachers alike.
The purpose of this special issue is to present several research perspectives on learning trajectories with the intention of encouraging the broader community to reflect on, better define, adopt, adapt, or challenge the concept. The issue begins by briefly introducing learning trajectories. The remaining articles provide elaboration, examples, and discussion of the construct. They purposefully are intended to be illustrative, exploratory, and provocative with regard to learning trajectories construct; they are not a set of verification studies.