Download Free Design And Simulation Of A Refractive Index Sensor Based On Spr And Lspr Using Gold Nanostructures Book in PDF and EPUB Free Download. You can read online Design And Simulation Of A Refractive Index Sensor Based On Spr And Lspr Using Gold Nanostructures and write the review.

This volume brings together several recent research articles in the field of nanophotonics. The editors have arranged the chapters in three main parts: quantum devices, photonic devices, and semiconductor devices. The chapters cover a wide variety of scopes in those areas including principles of plasmonic, SPR, LSPR and their applications, graphene-based nanophotonic devices, generation of entangled photon and quantum dots, perovskite solar cells, photo-detachment and photoionization of two-electrons systems, diffusion and intermixing of atoms in semiconductor crystals, lattice and molecular elastic and inelastic scattering including surface-enhanced Raman Scattering and their applications. It is our sincerest hope that science and engineering students and researchers could benefit from the new ideas and recent advances in the field that are covered in this book.
Handbook of Microbial Nanotechnology is a collection of the most recent scientific advancements in the fundamental application of microbial nanotechnology across various sectors. This comprehensive handbook highlights the vast subject areas of microbial nanotechnology and its potential applications in food, pharmacology, water, environmental remediation, etc. This book will serve as an excellent reference handbook for researchers and students in the food sciences, materials sciences, biotechnology, microbiology and in the pharmaceutical fields.Microbial nanotechnology is taking part in creating development and innovation in various sectors. Despite the participation of microbial nanotechnology in modern development, there are some hindrances. The lack of information, the possibility of adverse impacts on the environment, human health, safety and sustainability are still a challenge. This handbook addresses these challenges. - Offers up-to-date, scientific information on the integration of microbiology and nanotechnology - Explores how nanotechnology can improve the detection of trace chemical contaminants, viruses and bacteria in food and other industry applications - Provides readers with a fundamental understanding of microbial nanotechnology and its challenges - Includes real-time applications with case studies to illustrate how microbial nanotechnology influences modern sciences and technologies
This volume publishes the proceedings of the WACBE World Congress on Bioengineering 2015 (WACBE 2015), which was be held in Singapore, from 6 to 8 July 2015. The World Association for Chinese Biomedical Engineers (WACBE) organizes this World Congress biannually. Our past congresses have brought together many biomedical engineers from over the world to share their experiences and views on the future development of biomedical engineering. The 7th WACBE World Congress on Bioengineering 2015 in Singapore continued to offer such a networking platform for all biomedical engineers. Hosted by the Biomedical Engineering Society (Singapore) and the Department of Biomedical Engineering, National University of Singapore, the congress covered all related areas in bioengineering.
This book focuses on the surface plasmon resonance (SPR) technique covering fibre optic sensor research. It highlights recent advancements in geometric feature-based fibre optic SPR sensors for chemical/biochemical/biosensor applications. The contents also discuss the principle of the SPR sensing technique as well as various designs of fibre optic SPR probes for improving sensor sensitivity. It also includes numerous examples of SPR-based fibre optic sensors with various geometric (such as U-type, taper type, D-type, and interferometric-based) sensors. This volume will be a useful reference to those in academia and industry especially researchers with useful information focusing on fibre optic SPR sensors.
This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.
A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.
This book is a compendium of the finest research in nanoplasmonic sensing done around the world in the last decade. It describes basic theoretical considerations of nanoplasmons in the dielectric environment, gives examples of the multitude of applications of nanoplasmonics in biomedical and chemical sensing, and provides an overview of future trends in optical and non-optical nanoplasmonic sensing. Specifically, readers are guided through both the fundamentals and the latest research in the two major fields nanoplasmonic sensing is applied to – bio- and chemo-sensing – then given the state-of-the-art recipes used in nanoplasmonic sensing research.
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.