Download Free Derived Langlands Book in PDF and EPUB Free Download. You can read online Derived Langlands and write the review.

The Langlands Programme is one of the most important areas in modern pure mathematics. The importance of this volume lies in its potential to recast many aspects of the programme in an entirely new context. For example, the morphisms in the monomial category of a locally p-adic Lie group have a distributional description, due to Bruhat in his thesis. Admissible representations in the programme are often treated via convolution algebras of distributions and representations of Hecke algebras. The monomial embedding, introduced in this book, elegantly fits together these two uses of distribution theory. The author follows up this application by giving the monomial category treatment of the Bernstein Centre, classified by Deligne-Bernstein-Zelevinsky.This book gives a new categorical setting in which to approach well-known topics. Therefore, the context used to explain examples is often the more generally accessible case of representations of finite general linear groups. For example, Galois base-change and epsilon factors for locally p-adic Lie groups are illustrated by the analogous Shintani descent and Kondo-Gauss sums, respectively. General linear groups of local fields are emphasized. However, since the philosophy of this book is essentially that of homotopy theory and algebraic topology, it includes a short appendix showing how the buildings of Bruhat-Tits, sufficient for the general linear group, may be generalised to the tom Dieck spaces (now known as the Baum-Connes spaces) when G is a locally p-adic Lie group.The purpose of this monograph is to describe a functorial embedding of the category of admissible k-representations of a locally profinite topological group G into the derived category of the additive category of the admissible k-monomial module category. Experts in the Langlands Programme may be interested to learn that when G is a locally p-adic Lie group, the monomial category is closely related to the category of topological modules over a sort of enlarged Hecke algebra with generators corresponding to characters on compact open modulo the centre subgroups of G. Having set up this functorial embedding, how the ingredients of the celebrated Langlands Programme adapt to the context of the derived monomial module category is examined. These include automorphic representations, epsilon factors and L-functions, modular forms, Weil-Deligne representations, Galois base change and Hecke operators.
The book is divided on the studied aspects in integral geometry and that are of interest in field theory, at least, to the solution or obtaining of integrals to the field equations corresponding to the moduli stacks planted. In the chapters 1, 2, 3, 4, are exposed the generalizations of the Penrose transforms with a good D-modules theory in the derived categories context and their deformations. In the chapters 5, and 6, are exposed and discussed the different classification problems and their implications in the differential operators to the field equations. Finally, in the chapters 7, and 8 are exposed the aspects of the geometrical ramification of field ramification going behold the holomorphicity. In the end of the book are included several research exercises that can be discussed and exposed inside postgraduate courses in derived geometry or related as derived categories or categories on commutative and non-commutative rings.
This volume contains research and expository papers by some of the speakers at the 2005 AMS Summer Institute on Algebraic Geometry. Numerous papers delve into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties.
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $mathrm{(}infty, 2mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $mathrm{(}infty, 2mathrm{)}$-categories needed for the third part.
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.
The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.
Illuminate various areas of the study of geometric, analytic, and number theoretic aspects of automorphic forms and their $L$-functions, and both local and global theory are addressed. Topics discussed in the articles include Langlands functoriality, the Rankin-Selberg method, the Langlands-Shahidi method, motivic Galois groups, Shimura varieties, orbital integrals, representations of $p$-adic groups, Plancherel formula and its consequences, and the Gross-Prasad conjecture.
First published by the New York Public Library in 1946, Black's The Surnames of Scotland has long established itself as one of the great classics of genealogy. Arranged alphabetically, each entry contains a concise history of the family in question (with many cross-references), making it an indispensable tool for those researching their own family history, as well as readers with a general interest in Scottish history. An informative introduction and glossary also provide much useful information.
This book provides a conceptual introduction into the representation theory of local and global groups, with final emphasis on automorphic representations of reductive groups G over number fields F.Our approach to automorphic representations differs from the usual literature: We do not consider 'K-finite' automorphic forms, but we allow a richer class of smooth functions of uniform moderate growth. Contrasting the usual approach, our space of 'smooth-automorphic forms' is intrinsic to the group scheme G/F.This setup also covers the advantage that a perfect representation-theoretical symmetry between the archimedean and non-archimedean places of the number field F is regained, by making the bigger space of smooth-automorphic forms into a proper, continuous representation of the full group of adelic points of G.Graduate students and researchers will find the covered topics appear for the first time in a book, where the theory of smooth-automorphic representations is robustly developed and presented in great detail.