Download Free Dependence Of Helium Transport On Plasma Current And Elm Frequency In H Mode Discharges In Diii D Book in PDF and EPUB Free Download. You can read online Dependence Of Helium Transport On Plasma Current And Elm Frequency In H Mode Discharges In Diii D and write the review.

The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., [tau]{sub He} /[tau]{sub E}
A collaborative program has been initiated to measure helium (He) transport and exhaust on DIII-D in L-mode, ELM-free H-mode, and ELMing H-mode. These diverted plasmas operating in enhanced confinement regimes should provide valuable information for the International Thermonuclear Experimental Reactor (ITER). To simulate the presence of He ash in DIII-D, a 50 ms He puff is injected into a DIII-D plasma, resulting in a He concentration of [approximately] 15%. The time dependence of the He density profiles in the plasma core is measured with charge-exchange recombination spectroscopy and the He spatial distribution on the diverter floor is studied with an impurity monitor array. The dependence of core transport diffusivities as a function of ELM frequency have been studied and the first demonstration made of He exhaust from an H-mode plasma in a diverted tokamak. The exhaust rate of He from these ELMing H-mode plasmas appears to be within the acceptable range for a fusion reactor, like ITER, based on a measured value of [tau]*[sub He]/[tau]E [approx]14.
Comparisons of helium (He) transport and exhaust in L-mode and in an enhanced confinement regime (H-mode), which is induced by a polarizing electrode, have been made for the TEXTOR tokamak. The results show an increased tendency for He accumulation when bulk plasma energy and particle confinement are improved during the polarization induced H-mode. Since these results imply that a high He pumping efficiency may be necessary for H-mode burning plasmas, we have begun exploring He transport in a divertor H-mode, similar to that proposed for International Thermonuclear Experimental Reactor (ITER). A collaborative program has been initiated to measure He transport and scaling on DIII-D during L-mode, H-mode, and ELMing H-mode plasma conditions. To simulate the presence of He ash in DIII-D, a 25 ms He puff is injected into a DIII-D plasma resulting in a He concentration of (almost equal to)5%. The time dependence of the He{sup 2+} density profiles in the plasma core is measured by charge-exchange recombination spectroscopy at 11 radial locations.