Download Free Dense Spray Structure And Phenomena Part 1 Turbulence Dispersed Phase Interactions Book in PDF and EPUB Free Download. You can read online Dense Spray Structure And Phenomena Part 1 Turbulence Dispersed Phase Interactions and write the review.

This report describes one aspect of an investigation of dense-spray processes: namely turbulence/dispersed-phase interactions. The work was divided into two phases: (1) measurements of particle-laden jets injected into a still liquid; and homogenous particle flows, consisting of particles falling in a still (in the mean) liquid bath. The structure of turbulent, dilute, particle-laden water jets, submerged in still water, was studied both experimentally and theoretically. Nonintrusive measurements were made of mean and fluctuating phase velocities and particle number fluxes. Analysis was used to help interpret the measurements, considering three limiting cases, as follows: (1) locally-homogenous flow, where relative velocities between the phases are ignored; (2) deterministic separated flow, where relative velocities are considered, but particle/turbulence interactions are ignored; and (3) stochastic separated flow, where both phenomena are considered using random-walk methods. The locally-homogenous flow approximation was more effective than for past work involving larger density ratios between the phases; nevertheless, stochastic analysis yielded best agreement with measurements. Effects of enhanced drag (due to high relative turbulent intensities of particle motion) and effects of particles on liquid turbulence properties (turbulence modulation), were observed. Several recent proposals for treating these phenomena were examined; however, none appears to be adequate for reliable general use.
Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.
Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.
Fluid flows that transfer heat and mass often involve drops and bubbles, particularly if there are changes of phase in the fluid in the formation or condensation of steam, for example. Such flows pose problems for the chemical and mechanical engineer significantly different from those posed by single-phase flows. This book reviews the current state of the field and will serve as a reference for researchers, engineers, teachers, and students concerned with transport phenomena. It begins with a review of the basics of fluid flow and a discussion of the shapes and sizes of fluid particles and the factors that determine these. The discussion then turns to flows at low Reynolds numbers, including effects due to phase changes or to large radial inertia. Flows at intermediate and high Reynolds numbers are treated from a numerical perspective, with reference to experimental results. The next chapter considers the effects of solid walls on fluid particles, treating both the statics and dynamics of the particle-wall interaction and the effects of phase changes at a solid wall. This is followed by a discussion of the formation and breakup of drops and bubbles, both with and without phase changes. The last two chapters discuss compound drops and bubbles, primarily in three-phase systems, and special topics, such as transport in an electric field.