Download Free Del Pezzo And K3 Surfaces Book in PDF and EPUB Free Download. You can read online Del Pezzo And K3 Surfaces and write the review.

The present volume is a self-contained exposition on the complete classification of singular del Pezzo surfaces of index one or two. The method of the classification used here depends on the intriguing interplay between del Pezzo surfaces and K3 surfaces, between geometry of exceptional divisors and the theory of hyperbolic lattices. The topics involved contain hot issues of research in algebraic geometry, group theory and mathematical physics.This book, written by two leading researchers of the subjects, is not only a beautiful and accessible survey on del Pezzo surfaces and K3 surfaces, but also an excellent introduction to the general theory of Q-Fano varieties.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields. The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog.
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
This book is a collection of survey articles on several topics related to the general notion of integrability. It stems from a workshop on ``Mathematical Methods of Regular Dynamics'' dedicated to Sophie Kowalevski. Leading experts introduce corresponding areas in depth. The book provides a broad overview of research, from the pioneering work of the nineteenth century to the developments of the 1970s through the present. The book begins with two historical papers by R. L. Cooke onKowalevski's life and work. Following are 15 research surveys on integrability issues in differential and algebraic geometry, classical complex analysis, discrete mathematics, spinning tops, Painleve equations, global analysis on manifolds, special functions, etc. It concludes with Kowalevski's famouspaper published in Acta Mathematica in 1889, ``Sur le probleme de la rotation d'un corps solide autour d'un point fixe''. The book is suitable for graduate students in pure and applied mathematics, the general mathematical audience studying integrability, and research mathematicians interested in differential and algebraic geometry, analysis, and special functions.
This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
This book presents the proceedings of the joint U.S.-China Seminar on Singularity and Complex Geometry held at the Institute of Mathematics of the Chinese Academy, Beijing, in June 1994. This was the first gathering of Chinese and American mathematicians working in these fields (several Japanese mathematicians also took part). The volume covers a wide range of problems in areas such as CR-manifolds, value distribution theory of holomorphic curves, topology of the complements of algebraic plane curves with singularities and arrangements, topology of non-isolated singularities, gauge theory on resolutions of simple singularities, and residues of foliations. The articles give accounts of research in these fast developing areas. Much of the material appears here for the first time in print. Titles in this series are co-published with International Press, Cambridge, MA, USA.
This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West. Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work of Brandt, Dragon, and Kreuzer on classification of anomalies in gauge theories. This highly cited work, which is also quoted in the textbook of Steven Weinberg on quantum field theory, has not yet been presented in full detail except in private lecture notes by Norbert Dragon. Similarly, the software package PALP (Package for Analyzing Lattice Polytopes with applications to toric geometry), which has been incorporated in the SAGE (Software for Algebra and Geometry Experimentation) project, has not yet been documented in full detail. This book contains a user manual for a new thoroughly revised version of PALP. By including these two very useful original contributions, researchers in quantum field theory, string theory, and mathematics will find added value in a pedagogical presentation of the classification of quantum gauge field anomalies, and the accompanying comprehensive manual and tutorial for the powerful software package PALP.