Download Free Deflections Of Concrete Structures Book in PDF and EPUB Free Download. You can read online Deflections Of Concrete Structures and write the review.

Serviceability failures of concrete structures involving excessive cracking or deflection are relatively common, even in structures that comply with code requirements. This is often as a result of a failure to adequately account for the time-dependent deformations of concrete in the design of the structure. The serviceability provisions embodied in
Concrete structures must be designed both to be safe against failure and to perform satisfactorily in use. This book is written for practising engineers, students and designers and concentrates on design methods for checking the main serviceability requirements of control of deflections and cracking in reinforced and prestressed concrete structures.
Concrete structures must be designed not only to be safe against failure but also to perform satisfactorily in use. This book is written for practising engineers and students, and focuses on design methods for checking deflections and cracking which can affect the serviceability of reinforced and prestressed concrete structures. The authors present accurate and easy-to-apply methods of analysing immediate and long-term stresses and deformations. These methods allow designers to account for variations of concrete properties from project to project and from country to country, making the book universally applicable. Comprehensively updated, this third edition of Concrete Structures also includes four new chapters covering such topics as: non-linear analysis of plane frames, design for serviceability of prestressed concrete, serviceability of members reinforced with fibre polymer bars, and the analysis of time-dependent internal forces with linear computer programs that are routinely used by structural designers. A website accompanies the book, featuring three design calculation programs related to stresses in cracked sections, creep coefficients and time-dependent analysis. The book contains numerous examples, some of which are worked out in the SI units and others in the Imperial units. The input data and the main results are given in both SI and Imperial units. The book is not tied to any specific code, although the latest American and European codes of practice are covered in the appendices.
This text presents the most effective analysis for predicting the true stresses and deflections of concrete structures, accounting for creep and shrinkage of concrete and relaxation of prestressed reinforcement. Sustainability has become a major requirement in modern structures, which need to sustain satisfactory service over a longer life. It is not rare to specify a life span of 100 years for infrastructure such as bridges. This complete and wide-ranging study of stresses and deformations of reinforced and prestressed concrete structures focuses on design methods for avoiding the deflections and cracking that diminish serviceability. This fourth edition has a new emphasis on designing for serviceability. It has been comprehensively updated. It now includes 65 solved examples and more than 45 instructive problems with answers given at the end of the book. An accompanying website contains design calculation programs, which allow interactive data input. Independent of codes of practice, the book is universally applicable, and is especially suitable for practising engineers and graduate students.
The book combines history with academic notes for use at the university level, presenting design examples from actual jobs with applications and detailing for the practicing engineer. Chapter 1 tells the history of post-tensioned concrete as only Ken Bondy can tell it. Chapters 2-8 are the notes Dirk Bondy uses to teach Design of Prestressed Concrete Structures at UCLA and Cal Poly-San Luis Obispo. Chapters 9-13 are design examples that address many of the decisions faced by practicing engineers on typical projects. Chapters 13-14 cover the art of detailing and observing the construction of post-tensioned concrete. This knowledge was obtained over many years of working on our own projects and listening and learning from the the pioneers of post-tensioned concrete. Chapter 15 covers the slab on grade industry, which represents more sales of post-tensioning tendons than all other post-tensioning applications combined. Chapter 16 discusses the challenging application of post-tensioning-external post-tensioning.
A literature survey and state-of-the-art study was complied using 233 primary source documents, research papers, and texts. Over 800 documents were scanned to arrive at the primary source documents. The problem of structural deflections is discussed and reviewed in its component areas of static and dynamic deflections as related to forcing functions and structural characteristics. Also the interactions of major structural dflections with building structures subsystems and human occupants is reviewed. Emphasis is placed on serviceability limit states of deflections. Detailed comparisons of human response to structural vibrations are also made. The report is broad in scope and covers the areas of analysis, design and experimentation. (Author).