Download Free Deep Eutectic Solvents Book in PDF and EPUB Free Download. You can read online Deep Eutectic Solvents and write the review.

A useful guide to the fundamentals and applications of deep eutectic solvents Deep Eutectic Solvents contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio)catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano)materials preparation, biomass processing, and gas adsorption. The book is aimed at organic chemists, catalytic chemists, pharmaceutical chemists, biochemists, electrochemists, and others involved in the design of eco-friendly reactions and processes. This important book: -Explores the promise of DESs as an environmentally benign alternative to hazardous organic solvents -Covers the synthesis, structure, properties (incl. toxicity) as well as a wide range of applications -Offers a springboard for stimulating critical discussion and encouraging further advances in the field Deep Eutectic Solvents is an interdisciplinary resource for researchers in academia and industry interested in the many uses of DESs as an environmentally benign alternative reaction media.
This is one of the first books fully dedicated to the rapidly advancing and expanding research area of deep eutectic solvents. Written by the internationally recognized expert in solution chemistry, it supplies full information regarding preparation of these new eco-friendly solvents, their properties and applications. The current and potential applications of deep eutectic solvents as organic reaction media, catalytic system, in biomass processing, nanotechnology and metal finishing industry, as well as for extraction and separation are extensively discussed.This highly informative and carefully presented book will appeal to practicing chemists (organic chemists, polymer chemists, biochemists) as well as chemical engineers and environmental scientists.
Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, and bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This book details advances in metal electrodeposition.
This book focuses on the properties of deep eutectic solvents (DESs) and recent advances in their application in lignocellulosic biomass processing. Lignocellulosic biomass conversion to biofuels, biochemicals and other value-added products has attracted global attention because it is a readily available, inexpensive and renewable resource. However, in order for biomass technologies to be commercially viable, biomass recalcitrance needs to be cost-effectively reduced. Deep eutectic solvents (DESs) are new ‘green' solvents that have the high potential for biomass processing thanks to their low cost, low toxicity, biodegradability, and easy recycling and reuse. After an overview of the current lignocellulosic biomass pretreatment, the book discusses the synthesis and physiochemical properties of DESs, as well as key findings on the effects of DES on cellulose, hemicellulose and lignin solubilization, biomass pretreatment and biomass crystallinity. It then addresses the enzymatic hydrolysis performance of DES-pretreated solids, compatibility of DESs with enzymes and microorganisms, and the recycling potential of DESs. Lastly, it compares DESs with ionic liquids, and examines the challenges and opportunities relating to extending the use of DESs in lignocellulosic processing.
Initially considered as a sub-class of ionic liquids, eutectic mixtures are formed by mixtures of low cost, often biodegradable Lewis or Bronsted acids and bases. Eutectic mixtures have gathered a growing scientific interest by the academic and industrial communities as they are interesting for many applications ranging from metal processing to biomass treatment or pharmaceuticals. This volume gathers contributions by some of the most active research groups in the world using eutectic mixtures for applications in separation, extraction or pharmaceutical and medical applications. The different contributions aim at a large overview of the field for these particular applications by reviewing literature data and presenting ground breaking research in the different fields.
Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production.Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products.Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. - Evaluates biodiesel as a renewable energy source and documents global biodiesel development - The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry - Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops
In the late 1990s, there was an explosion of research on ionic liquids and they are now a major topic of academic and industrial interest with numerous existing and potential applications. Since then, the number of scientific papers focusing on ionic liquids has risen exponentially, including a few edited multi-author books covering the latest advances in ionic liquids chemistry and several volumes of symposium proceedings. Much of the content in these books and volumes is written using technical jargon that only scientists at the cutting edge of ionic liquids research will understand and ionic liquids are hardly covered in most modern chemistry textbooks. This is the first single-author book on ionic liquids and the first introductory book on the topic. It is written in a clear, concise and consistent way. The book provides a useful introduction to ionic liquids for those readers who are not familiar with the topic. It is also wide ranging, embracing every aspect of the chemistry and applications of ionic liquids. The book draws extensively on the primary scientific literature to provide numerous examples of research on ionic liquids. These examples will enable the reader to become familiar with the key developments in ionic liquids chemistry over recent years. The book provides an introduction to: ionic liquids; their nomenclature; history; physical, chemical and biological properties; and their wide ranging uses and potential applications in catalysis, electrochemistry, inorganic chemistry, organic chemistry, analysis, biotechnology, green chemistry and clean technology. Notable and important chapters include "The Green Credentials of Ionic Liquids" and "Biotechnology." The chapter on "Applications" includes sections with brief descriptions of recent research on the development of ionic liquids: - for the construction of a liquid mirror for a moon telescope - for use as rocket propellants - for use as antimicrobial agents that combat MRSA - as active pharmaceutical ingredients and antiviral drugs - for embalming and tissue preservation Science students, researchers, teachers in academic institutions and chemists and other scientists in industry and government laboratories will find the book an invaluable introduction to one of the most rapidly advancing and exciting fields of science and technology today.
A comprehensive, extensive textual analysis of the principles of solvent selection and use, the handbook is intended to help formulators select ideal solvents, safety coordinators to protect workers, and legislators and inspectors to define and implement technically correct public safeguards for use, handling, and disposal.
Paves the way for new industrial applications using redox biocatalysis Increasingly, researchers rely on the use of enzymes to perform redox processes as they search for novel industrial synthetic routes. In order to support and advance their investigations, this book provides a comprehensive and current overview of the use of redox enzymes and enzyme-mediated oxidative processes, with an emphasis on the role of redox enzymes in chemical transformations. The authors examine the full range of topics in the field, from basic principles to new and emerging research and applications. Moreover, they explore everything from laboratory-scale procedures to industrial manufacturing. Redox Biocatalysis begins with a discussion of the biochemical features of redox enzymes as well as cofactors and cofactor regeneration methods. Next, the authors present a variety of topics and materials to the research and development of full-scale industrial applications, including: Biocatalytic applications of redox enzymes such as dehydrogenases, oxygenases, oxidases, and peroxidases Enzyme-mediated oxidative processes based on biocatalytic promiscuity All the steps from enzyme discovery to robust industrial processes, including directed evolution, high-throughput screening, and medium engineering Case studies tracing the development of industrial applications using biocatalytic redox reactions Each chapter ends with concluding remarks, underscoring the key scientific principles and processes. Extensive references serve as a gateway to the growing body of research in the field. Researchers in both academia and industry will find this book an indispensable reference for redox biotransformations, guiding them from underlying core principles to new discoveries and emerging industrial applications.
This book offers both a practical as well a theoretical approach to Solvent Microextraction (SME) and will help analytical chemists to evaluate SME for a given sample preparation. Introductory chapters overview a comparison of SME with other sample preparation methods, a summary of the technical aspects, and a detailed theoretical treatment of SME. The book then describes the practical aspects of the technique, with detailed “how to” chapters devoted to the preparation and analysis of atmospheric, solid and liquid environmental, clinical and industrial samples. This text will serve as both a handy laboratory desk-reference and an indispensible instructional tool.