Download Free Decoherence And Entropy In Complex Systems Book in PDF and EPUB Free Download. You can read online Decoherence And Entropy In Complex Systems and write the review.

The contributions to this volume are based on selected lectures from the first international workshop on decoherence, information, complexity and entropy (DICE). The aim of this volume is to reflect the growing importance ot common concepts behind seemingly different fields such as quantum mechanics, general relativity and statistical physics in a form accessible to nonspecialist researchers. Many presentations include original results which published here for the first time.
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
This book offers the revised and completed notes of lectures given at the 2007 conference, "Quantum Potential Theory: Structures and Applications to Physics." These lectures provide an introduction to the theory and discuss various applications.
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
A broad introduction and overview of current interdisciplinary studies on complexity, this volume is an ideal starting point for scientists and graduate students who wish to enter the field. The book features a diverse collection of the latest research work not found in a single volume elsewhere.Among the highly regarded contributors to the volume are the 2004 Boltzmann medalists E G D Cohen and H E Stanley; G Parisi, Boltzmann medalist in 1992 and Dirac medalist in 1999; and numerous internationally renowned experts, such as S Abe, F T Arecchi, J-P Bouchaud, A Coniglio, W Ebeling, P Grigolini, R Mantegna, M Paczuski, A Robledo, L Pietronero, A Vespignani, and T Vicsek.
Spectacular experimental advances in observational cosmology have helped raise cosmology to the status of a genuine science, and it is now possible to test many speculative theoretical issues and to obtain reliable values for the key parameters defining our observable universe. This book has emerged from selected lectures given at the Mexican School on Gravitation and Mathematical Physics by leaders in their field. Conceived as both a broad survey and as topical coverage of the latest developments, it will benefit graduate students and newcomers to this field and provide researchers in the field with a modern source of reference.
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
Rheology of Emulsions, Volume 22: Electrohydrodynamics Principles studies phenomena at liquid-liquid interfaces, including finely dispersed particles or structures, in particular emulsions, double emulsions and biological cells. The book considers the forces of electrical origin that participate in the physical events at liquid-liquid interfaces, taking into account electron transfer phenomenon and electrodynamics principles. Topics covered are of interest to a broad range of scientists, researchers and graduate students with a basic knowledge of physical chemistry, electromagnetism, fluid mechanics, classical and quantum electrodynamics. The implications and applications of the material presented in the book contribute to the advanced fundamental, applied and engineering research of interfacial electroviscoelastic phenomena. - Features a multidisciplinary approach to electron transfer phenomena - Introduces a new constitutive model of liquids and a theory of electroviscoelasticity - Addresses a broad range of subject field examples that make it useful to various research communities