Download Free Decoherence Book in PDF and EPUB Free Download. You can read online Decoherence and write the review.

This detailed, accessible introduction to the field of quantum decoherence reviews the basics and then explains the essential consequences of the phenomenon for our understanding of the world. The discussion includes, among other things: How the classical world of our experience can emerge from quantum mechanics; the implications of decoherence for various interpretations of quantum mechanics; recent experiments confirming the puzzling consequences of the quantum superposition principle and making decoherence processes directly observable.
Entanglement and (de-)coherence arguably define the central issues of concern in present day quantum information theory. Entanglement being a consequence of the quantum mechanical superposition principle for composite systems, a better understanding of the environment-induced destruction of coherent superposition states is required to devise novel strategies for harvesting quantum interference phenomena. The present book collects a series of advanced lectures on the theoretical foundations of this active research field, from mathematical aspects underlying quantum topology to mesoscopic transport theory. All lectures start out from an elementary level and proceed along a steep learning curve. This makes the material particularly suitable for student seminars on the more fundamental theoretical aspects of quantum information, and equally useful as supplementary reading for advanced lectures on this topic.
Decoherence, a concept known only to few physicists when the first edition appeared in 1996, has since become firmly established experimentally and understood theoretically, as well as widely reported in the literature. The major consequences of decoherence are the emergence of "classicality" in general, superselection rules, the border line between microscopic and macroscopic behavior in molecules and field theory, the emergence of classical spacetime, and the appearance of quantum jumps. The most important new developments in this rapidly evolving field are included in the second edition of this book, which has become a standard reference on the subject. All chapters have been thoroughly revised and updated. New fields of application now addressed span chaos theory, quantum information, neuroscience, primordial fluctuations in cosmology, black holes and string theory, experimental tests, and interpretational issues. While the major part of the book is concerned with environmental decoherence derived from a universal Schrödinger equation, later chapters address related or competing methods, such as consistent histories, open system dynamics, algebraic approaches, and collapse models.
Quantum measurement (Le., a measurement which is sufficiently precise for quantum effects to be essential) was always one of the most impor tant points in quantum mechanics because it most evidently revealed the difference between quantum and classical physics. Now quantum measure ment is again under active investigation, first of all because of the practical necessity of dealing with highly precise and complicated measurements. The nature of quantum measurement has become understood much bet ter during this new period of activity, the understanding being expressed by the concept of decoherence. This term means a physical process lead ing from a pure quantum state (wave function) of the system prior to the measurement to its state after the measurement which includes classical elements. More concretely, decoherence occurs as a result of the entangle ment of the measured system with its environment and results in the loss of phase relations between components of the wave function of the measured system. Decoherence is essentially nothing else than quantum measurement, but considered from the point of view of its physical mechanism and resolved in time. The present book is devoted to the two concepts of quantum measure ment and decoherence and to their interrelation, especially in the context of continuous quantum measurement.
Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures
Poetry. A quantum autobiography of "I," DECOHERENCE tracks the unfolding, loss, and reconstitution of self, knowledge and object, and permeates the boundary—the artifice—between I and world. Using quantum physics, thermodynamics, and symbolic logic, Kremer wrenches us into the process of becoming. These pages are a visual analogue of the equation of being and "the continuous whiting-out / of not-being." From broken symmetry and the Federation of Black Cowboys to the Sphinx and the freewheel, from our fears of losing an iPhone to humanity's reduction "to 1,000 breeding pairs," Kremer's metaphors are as variegated as are her multiverses. DECOHERENCE speaks to the alienation of the 21st century soul and to the possibility of that soul's reengagement. An incessant physical, geological, magnetic, astronomical, mathematical, and computational diction reminds us that we, and our known worlds, constantly decohere. "DECOHERENCE is one of those marvelous books that feels both familiar and like nothing I've ever read before. Classic couplets and incantatory repetitions share the page with abstract images and graphic symbols. Syntax is subverted and mathematical functions are applied to language. Naturalist descriptions of farmland and seascapes contrast with references to mini-malls, satellite dishes and Macbook Pros. The combined effect is grounding, unexpected, delightful, nostalgic, funny, immediate, and at times deeply lonely. DECOHERENCE embodies the experience of reading poetry in the 21st century."&38212;Miranda McLeod
The idea of editing the present volume in the Lecture Notes in Physics series arosewhileorganizingthe“ConferenceonIrreversibleQuantumDynamics”that took place at The Abdus Salam International Center for Theoretical Physics, Trieste, Italy, from July 29 to August 2, 2002. The aim of the Conference was to bring together di?erent groups of - searcherswhoseinterestsandpursuitsinvolveirreversibilityandtimeasymmetry in quantum mechanics. The Conference promoted open and in-depth exchanges of di?erent points of view, concerning both the content and character of qu- tum irreversibility and the methodologies used to study it. The following main themes were addressed: • Theoretical Aspects of Quantum Irreversible Dynamics • Open Quantum Systems and Applications • Foundational Aspects of Irreversible Quantum Dynamics • Asymmetric Time Evolution and Resonances Eachthemewasreviewedbyanexpertinthe?eld,accompaniedbymorespeci?c, research-like shorter talks. The whole topic of quantum irreversibility in all its manifold aspects has always raised a lot of interest, starting with the description of unstable systems in quantum mechanics and the issue of quantum measurement. Further, in - cent years a boost of activity concerning noise, dissipation and open systems has been prompted by the fast developing ?eld of quantum communication and information theory. These considerations motivated the editors to put together a volume that tries to summarize the present day status of the research in the ?eld, with the aim of providing the reader with an accessible and exhaustive introduction to it.
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to deepen the knowledge.