Download Free Decision Problems For Equational Theories Of Semigroups And General Algebras Book in PDF and EPUB Free Download. You can read online Decision Problems For Equational Theories Of Semigroups And General Algebras and write the review.

This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will find several avenues for exploring the connections between semigroup theory and the theory of operator algebras.
This book contains contributions by leading experts which cover an extensive range of topics in semigroups theory. Some of the articles exhibit the strong links with theoretical computer science. Several survey articles summarize the salient features of special fields of the theory of particular interest in the contemporary research. Special care has been taken in the presentation of the papers, making them accessible to a large audience.
This monograph thoroughly explores the development of the theory of varieties of semigroups and of two related algebras: involution semigroups and monoids. Through this in-depth analysis, readers will attain a deeper understanding of the differences between these three types of varieties, which may otherwise seem counterintuitive. New results with detailed proofs are also presented that answer previously unsolved fundamental problems. Featuring both a comprehensive overview as well as highlighting the author’s own significant contributions to the area, this book will help establish this subfield as a matter of timely interest. Advances in the Theory of Varieties of Semigroups will appeal to researchers in universal algebra and will be particularly valuable for specialists in semigroups.
"We prove that any variety of relation algebras which contains an algebra with infinitely many elements below the identity, or which contains the full group relation algebra on some infinite group (or on arbitrarily large finite groups), must have an undecidable equational theory. Then we construct an embedding of the lattice of all subsets of the natural numbers into the lattice of varieties of relation algebras such that the variety correlated with a set [italic capital]X of natural numbers has a decidable equational theory if and only if [italic capital]X is a decidable (i.e., recursive) set. Finally, we construct an example of an infinite, finitely generated, simple, representable relation algebra that has a decidable equational theory.'' -- Abstract.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Rewriting has always played an important role in symbolic manipulation and automated deduction systems. The theory of rewriting is an outgrowth of Combinatory Logic and the Lambda Calculus. Applications cover broad areas in automated reasoning, programming language design, semantics, and implementations, and symbolic and algebraic manipulation. The proceedings of the third International Conference on Rewriting Techniques and Applications contain 34 regular papers, covering many diverse aspects of rewriting (including equational logic, decidability questions, term rewriting, congruence-class rewriting, string rewriting, conditional rewriting, graph rewriting, functional and logic programming languages, lazy and parallel implementations, termination issues, compilation techniques, completion procedures, unification and matching algorithms, deductive and inductive theorem proving, Gröbner bases, and program synthesis). It also contains 12 descriptions of implemented equational reasoning systems. Anyone interested in the latest advances in this fast growing area should read this volume.
Culminates nearly half a century of the late Alfred Tarski's foundational studies in logic, mathematics, and the philosophy of science. This work shows that set theory and number theory can be developed within the framework of a new, different and simple equational formalism, closely related to the formalism of the theory of relation algebras.
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
Contributions to Mathematical Logic