Download Free De Novo Peptide Design Book in PDF and EPUB Free Download. You can read online De Novo Peptide Design and write the review.

The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.
Peptide Applications in Biomedicine, Biotechnology and Bioengineering summarizes the current knowledge on peptide applications in biomedicine, biotechnology and bioengineering. After a general introduction to peptides, the book addresses the many applications of peptides in biomedicine and medical technology. Next, the text focuses on peptide applications in biotechnology and bioengineering and reviews of peptide applications in nanotechnology. This book is a valuable resource for biomaterial scientists, polymer scientists, bioengineers, mechanical engineers, synthetic chemists, medical doctors and biologists. - Presents a self-contained work for the field of biomedical peptides - Summarizes the current knowledge on peptides in biomedicine, biotechnology and bioengineering - Covers current and potential applications of biomedical peptides
De novo Peptide Design: Principles and Applications presents the latest developments in the fields of therapeutic peptides and bio-nanotechnology. The title focuses on the design of peptides, particularly how peptides may be tailored to specific functions. It includes computational and experimental protocols to assist in the design of peptides. Sections cover the basics of protein and peptide structure, modeling and simulation, solid phase peptide synthesis, peptide-based antibiotics, drug delivery, peptide nanomaterials, aromatic interactions directing nano-assembly, protein/peptide aggregation, therapeutic interventions against protein/peptide aggregation diseases, peptide based hydrogels, computational tools and algorithms for peptide design, and experimental protocols in peptide chemistry. In addition, the book covers key aspects in peptide design, providing a solution for researchers working within the 'peptidic universe' to create new therapeutic agents. - Gives comprehensive coverage, including peptide design, modeling, synthesis and applications - Presents emerging topics in the design of peptide-based therapeutics - Details the latest developments in the fields of therapeutic peptides and bio-nanotechnology - Considers peptide design and the tailoring of peptides to specific functions - Offers computational tools and algorithms for peptide design and experimental protocols for peptide chemistry
Kleine Moleküle für Einsteiger: Dieser für Lehre und Selbststudium gleichermaßen geeignete Band behandelt den computergestützten Entwurf von Wirkstoffen, Enzyminhibitoren, Sonden und Markern für Biomoleküle und führt den Leser bis zum ersten eigenen De-Novo-Design eines funktionellen Moleküls. Gestützt auf lange Erfahrung im Molecular-Modeling-Umfeld erläutern die Autoren, welche Fragen mit den beschriebenen Methoden beantwortet werden können (und welche nicht).
De Novo Enzyme Design, the newest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume includes the design of metal binding maquettes, insertion of non-natural cofactors, Cu metallopeptides, non-covalent interactions in peptide assemblies, peptide binding and bundling, heteronuclear metalloenzymes, florinated peptides, De Novo imaging agents, and protein-protein interaction. - Continues the legacy of this premier serial with quality chapters on de novo enzyme design - Represents the newest volume in the Methods in Enzymology series, providing premier, quality chapters authored by leaders in the field - Ideal reference for those interested in the study of enzyme design that looks at both structure and mechanism
Biological processes in any living organism are based on selective interactions be tween particular biomolecules. In most cases, these interactions involve and are driven by proteins, which are the main conductors of any life process within the organism. The physical nature of these interactions is still not well known. This book presents an entirely new approach to analysis of biomolecular in teractions, in particular protein-protein and protein-DNA interactions, based on the assumption that these interactions are electromagnetic in nature. This new ap proach is the basis of the Resonant Recognition Model (RRM), which was devel oped over the last 15 years. Certain periodicities within the distribution of energies of delocalised electrons along a protein molecule are crucial to the protein's biological function, i.e. inter action with its target. If protein conductivity were introduced, then charges mov ing through the protein backbone might produce electromagnetic irradiation or ab sorption with spectral characteristics corresponding to energy distribution along the protein. The RRM is capable of calculating these spectral characteristics, which we hypothesized would be in the range of the infrared and visible light. These characteristics were confirmed with frequency characteristics obtained ex perimentally for certain light-induced biological processes.
Fibrous Protein: Coiled-Coils, Collagen and Elastomers is the first of a three-part series on Fibrous Proteins. The books are based on a very successful workshop in Alpbach, Austria on the general topic of Fibrous Proteins that gave rise to the award winning issue of Journal of Structural Biology. Part II will contain an extensive discussion of Molecular Motors and Muscle, Part III on Amyloids, Prions and Beta Proteins. Advances in Protein Chemistry is available online on ScienceDirect - full-text online of volumes 53 onwards. Reveals new structural and functional aspects of fibrous proteins Based on Fibrous Protein workshop in Alpbach, Austria that gave rise to 2003 Nobel Prize winners in Chemistry
This volume provides a collection of protocols and approaches for the creation of novel ligand binding proteins, compiled and described by many of today's leaders in the field of protein engineering. Chapters focus on modeling protein ligand binding sites, accurate modeling of protein-ligand conformational sampling, scoring of individual docked solutions, structure-based design program such as ROSETTA, protein engineering, and additional methodological approaches. Examples of applications include the design of metal-binding proteins and light-induced ligand binding proteins, the creation of binding proteins that also display catalytic activity, and the binding of larger peptide, protein, DNA and RNA ligands. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.
Volume 11 provides in an authoritative and timely manner in 16 stimulating chapters, written by 40 internationally recognized experts from 11 nations, and supported by more than 2600 references, 35 tables, and over 100 illustrations, many in color, a most up-to-date view on the role of cadmium for life, presently a vibrant research area. MILS-11 covers the bioinorganic chemistry of Cd(II), its biogeochemistry, anthropogenic release into the environment, and speciation in the atmosphere, waters, soils, and sediments. The analytical tools for Cd determination, its imaging in cells, and the use of 113Cd NMR to probe Zn(II) and Ca(II) proteins are summarized, as are Cd(II) interactions with nucleotides, nucleic acids, amino acids, and proteins including metallothioneins. The phytoremediation by Cd(II)-accumulating plants, etc., the toxicology of Cd(II), its damage to mammalian organs, and its role as a carcinogen for humans, are highlighted.