Download Free Dc Technology In Utility Grids Book in PDF and EPUB Free Download. You can read online Dc Technology In Utility Grids and write the review.

The assembly of this study started in 2013 during the preparation of the foundation of the Flexible Electrical Networks (FEN) Research Campus, an institution supported by the German Federal Ministry of Education and Science, concentrating on DC technology in power grids as an enabler for the energy transition. It reflects the state-of-the-art and research needs of DC technology against the background of application in public grids up until the year 2015. Topics as components, control, management and automation, high-, medium, and low-voltage grid concepts as well as social dimensions, economics, and impact on living beings are considered. After substantial editorial effort, its first public edition has become ready now. The aim of FEN is to investigate and to develop flexible power grids. Such grid will safeguard the future energy supply with a high share of fluctuating and decentralized renewable energy sources. At the same time, these grids will enable a reliable and affordable energy supply in the future. The objective is to provide new technologies and concepts for the security and quality of the energy supply in the transmission and distribution grids. To pursue this goal, the use of direct-current (DC) technology, based on power electronics, automation and communication technologies, plays an important role. Although DC technology is not yet established as a standard technology in the public electrical power supply system, its high potential has been widely recognized. The use of DC is an enabler to make the future energy supply system more economical than a system based on alternating-current (AC), because of its superior properties in handling distributed and fluctuation power generation. Indeed, DC connections are already the most cost-efficient solution in cases of very high-power long-distance point-to-point transmission of electricity or via submarine cables. The objective of the FEN Research Campus is now to achieve and demonstrate feasibility of DC as a standard solution for future electrical grids, as described in this study.
DC electric power distribution systems have higher efficiency, better current carrying capacity and faster response when compared to conventional AC systems. They also provide a more natural interface with many types of renewable energy sources. Furthermore, there are fewer issues with reactive power flow, power quality and frequency regulation, resulting in a notably less complex control system. All these facts lead to increased applications of DC systems in modern power systems. Still, design and operation of these systems imposes a number of specific challenges, mostly related to lack of mature protection technology and operational experience, as well as very early development stage of standards regarding DC based power infrastructure.
Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
SMART GRID AND ENABLING TECHNOLOGIES Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology An exploration of the opportunities and challenges posed by renewable energy integration Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems An analysis of distributed generation Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. Smart Grid and Enabling Technologies will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.
"This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
This book addresses the need to understand the development, use, construction, and operation of smart microgrids (SMG). Covering selected major operations of SMG like dynamic energy management, demand response, and demand dispatch, it describes the design and operational challenges of different microgrids and provides feasible solutions for systems. Smart Micro Grid presents communication technologies and governing standards used in developing communication networks for realizing various smart services and applications in microgrids. An architecture facilitating bidirectional communication for smart distribution/microgrid is brought out covering aspects of its design, development and validation. The book is aimed at graduate, research students and professionals in power, power systems, and power electronics. Features: • Covers a broad overview of the benefits, the design and operation requirements, standards and communication requirements for deploying microgrids in distribution systems. • Explores issues related to planning, expansion, operation, type of microgrids, interaction among microgrid and distribution networks, demand response, and the technical requirements for the communication network. • Discusses current standards and common practices to develop and operate microgrids. • Describes technical issues and requirements for operating microgrids. • Illustrates smart communication architecture and protocols.
Today's electricity industry - large power stations feeding a nationwide grid - will soon be a thing of the past. This book explains why and what will replace it - decentralized and distributed electrical resources which can be up to 10 times as economically valuable. The authors - all leading experts in the field - explain very clearly and thoroughly all the benefits, so the engineers will understand the economic advantages and the investors will understand the engineering efficiencies. Here's what industry experts are saying about Small is Profitable... 'A tour-de-force and a goldmine of good ideas. It is going to have a stunning impact on thinking about electricity.' Walter C. Patterson, Senior Research Fellow, Royal Institute of International Affairs, London. 'An amazing undertaking - incredibly ambitious yet magnificently researched and executed.' Dr. Shimon Awerbuch, Senior Advisor, International Energy Agency, Paris. 'Outstanding...You have thought of some [benefits] I never considered...A great resource for the innovation in energy services that will have to take place for us to have a sustainable future.' Dr. Carl Weinberg, Weinberg Associates, former Research Director, PG&E. 'This is a brilliant synthesis and overview with a lot of original analytics and insights and a very important overall theme. I think it is going to have a big impact.' Greg Kats, Principal, Capital E LLC, former Finance Director for Efficiency and Renewable Energy, U.S. Department of Energy. 'E. F. Schumacher would be proud of this rigorous extension of his thesis in Small is Beautiful. It shows how making systems the right size can make them work better and cost less. Here are critical lessons for the new century: technologies tailored to the needs of people, not the reverse, can improve the economy and the environment.' Dr. Daniel Kammen, Professor of Energy and Society and of Public Policy, University of California, Berkeley. 'Small is Profitable creates an unconventional but impeccably reasoned foundation to correctly assign the costs and true benefits of distributed energy systems. It has become an indispensable tool for modelling distributed energy systems benefits for us.' Tom Dinwoodie, CEO and Chairman, PowerLight Corporation. 'A Unique and valuable contribution to the distributed energy industry...Small Is Profitable highlights the societal benefits of distributed resources, and will be a helpful guide to policymakers who wish to properly account for these benefits in the marketplace.' Nicholas Lenssen, Senior Director, Primen. 'This book will shift the electric industry from the hazards of overcentralization toward the new era where distributed generation will rule.' Steven J. Strong, President, Solar Design Associates, Inc. 'Readers will understand why distributed resources are poised to fundamentally alter the electric power system. Its comprehensive review of the benefits of distributed resources [is] an important part of my library.' Dr. Thomas E. Hoff, President, Clean Power Research. 'The most comprehensive treatise on distributed generation.... Great job and congratulations.' Howard Wenger, Principal, Pacific Energy Group '..[D]ensely packed with information and insights...goes a long way to demonstrate that the former paradigm of electric power supply no longer makes sense.' Prof. Richard Hirsh, University of Vermont, Leading historian of the electric power sector. 'Amory Lovins was already the world's most original and influential thinker on the future of energy services in general and electricity systems in particular. This remarkable book is a very worthy addition to an extraordinary legacy.' Ralph Cavanagh, Energy Co-Director, Natural Resources Defense Council. 'This is a book every utility professional should have on the bookshelf.' Dr Peter S. Fox-Penner, Principal and Chairman of the Board, the Brattle Group, former Principal Deputy Assistant Secretary of Energy.