Download Free Data Products And The Data Mesh Book in PDF and EPUB Free Download. You can read online Data Products And The Data Mesh and write the review.

Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
"Data Products and the Data Mesh" is a comprehensive guide that explores the emerging paradigm of the data mesh and its implications for organizations navigating the data-driven landscape. This book equips readers with the knowledge and insights needed to design, build, and manage effective data products within the data mesh framework. The book starts by introducing the core concepts and principles of the data mesh, highlighting the shift from centralized data architectures to decentralized, domain-oriented approaches. It delves into the key components of the data mesh, including federated data governance, data marketplaces, data virtualization, and adaptive data products. Each chapter provides in-depth analysis, practical strategies, and real-world examples to illustrate the application of these concepts. Readers will gain a deep understanding of how the data mesh fosters a culture of data ownership, collaboration, and innovation. They will explore the role of modern data architectures, such as data marketplaces, in facilitating decentralized data sharing, access, and monetization. The book also delves into the significance of emerging technologies like blockchain, AI, and machine learning in enhancing data integrity, security, and value creation. Throughout the book, readers will discover practical insights and best practices to overcome challenges related to data governance, scalability, privacy, and compliance. They will learn how to optimize data workflows, leverage domain-driven design principles, and harness the power of data virtualization to drive meaningful insights and create impactful data products. "Data Products and the Data Mesh" is an essential resource for data professionals, architects, and leaders seeking to navigate the complex world of data products within the data mesh paradigm. It provides a comprehensive roadmap for building a scalable, decentralized, and innovative data ecosystem that empowers organizations to unlock the full potential of their data assets and drive data-driven success.
There are no easy decisions in software architecture. Instead, there are many hard parts--difficult problems or issues with no best practices--that force you to choose among various compromises. With this book, you'll learn how to think critically about the trade-offs involved with distributed architectures. Architecture veterans and practicing consultants Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani discuss strategies for choosing an appropriate architecture. By interweaving a story about a fictional group of technology professionals--the Sysops Squad--they examine everything from how to determine service granularity, manage workflows and orchestration, manage and decouple contracts, and manage distributed transactions to how to optimize operational characteristics, such as scalability, elasticity, and performance. By focusing on commonly asked questions, this book provides techniques to help you discover and weigh the trade-offs as you confront the issues you face as an architect. Analyze trade-offs and effectively document your decisions Make better decisions regarding service granularity Understand the complexities of breaking apart monolithic applications Manage and decouple contracts between services Handle data in a highly distributed architecture Learn patterns to manage workflow and transactions when breaking apart applications
As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
Write code that's clean, concise, and to the point: code that others will read with pleasure and reuse. Comparing your code to that of expert programmers is a great way to improve your coding skills. Get hands-on advice to level up your coding style through small and understandable examples that compare flawed code to an improved solution. Discover handy tips and tricks, as well as common bugs an experienced Java programmer needs to know. Make your way from a Java novice to a master craftsman. This book is a useful companion for anyone learning to write clean Java code. The authors introduce you to the fundamentals of becoming a software craftsman, by comparing pieces of problematic code with an improved version, to help you to develop a sense for clean code. This unique before-and-after approach teaches you to create clean Java code. Learn to keep your booleans in check, dodge formatting bugs, get rid of magic numbers, and use the right style of iteration. Write informative comments when needed, but avoid them when they are not. Improve the understandability of your code for others by following conventions and naming your objects accurately. Make your programs more robust with intelligent exception handling and learn to assert that everything works as expected using JUnit5 as your testing framework. Impress your peers with an elegant functional programming style and clear-cut object-oriented class design. Writing excellent code isn't just about implementing the functionality. It's about the small important details that make your code more readable, maintainable, flexible, robust, and faster. Java by Comparison teaches you to spot these details and trains you to become a better programmer. What You Need: You need a Java 8 compiler, a text editor, and a fresh mind.That's it.
Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability