Download Free Data Envelopment Analysis For Simplified Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online Data Envelopment Analysis For Simplified Neutrosophic Sets and write the review.

In recent years, there has been a growing interest in neutrosophic theory, and there are several methods for solving various problems under neutrosophic environment. However, a few papers have discussed the Data envelopment analysis (DEA) with neutrosophic sets. So, in this paper, we propose an input-oriented DEA model with simplified neutrosophic numbers and present a new strategy to solve it. The proposed method is based on the weighted arithmetic average operator and has a simple structure. Finally, the new approach is illustrated with the help of a numerical example.
In recent years, there has been a growing interest in neutrosophic theory, and there are several methods for solving various problems under neutrosophic environment. However, a few papers have discussed the Data envelopment analysis (DEA) with neutrosophic sets. So, in this paper, we propose an input-oriented DEA model with simplified neutrosophic numbers and present a new strategy to solve it. The proposed method is based on the weighted arithmetic average operator and has a simple structure. Finally, the new approach is illustrated with the help of a numerical example.
The concept of a neutrosophic set is a comprehensive extension of both fuzzy sets and Intuitionistic Fuzzy Sets (IFSs). It allows decision makers to assign three distinct membership degrees, enabling a more precise representation of uncertainty. Neutrosophic Data Envelopment Analysis (Neu-DEA) is an extended version of the Data Envelopment Analysis (DEA) and Fuzzy DEA (FDEA) concepts. It aims to assess the performance of Decision Making Units (DMUs) within a neutrosophic environment. Neu-DEA specifically tackles the challenges associated with evaluating performance when the input and output data are incomplete, ambiguous, or unsure. As a result, the Neu-DEAs have attracted substantial attention from scholars and academics. This article aims to provide an academic overview of the present state, development patterns, and future research directions of the Neu-DEA research. To do this, the study examines relevant publications using two analytical approaches: description analysis and literature review.
Data envelopment analysis (DEA) is a non-parametric approach for the estimation of production frontier that is used to calculate the performance of a group of similar decision-making units (DMUs) which employ comparable inputs to produce related outputs. However, observed values might occasionally be confusing, imprecise, ambiguous, inadequate, and inconsistent in real-world applications. Thus, disregarding these factors may result in incorrect decision-making. Thus neutrosophic sets have been created as an extension of intuitionistic fuzzy sets to represent ambiguous, erroneous, missing, and inaccurate information in real-world applications. In this study, we have proposed a technique for solving the neutrosophic form of the Charnes–Cooper–Rhodes (CCR) model based on single-value trapezoidal neutrosophic numbers (SVTrNNs). The possibilistic mean for SVTrNNs is redefined and applied the Mehar approach to transforming the neutrosophic DEA (Neu-DEA) model into its corresponding crisp DEA model. As a result, the efficiency scores of the DMUs are calculated using different risk parameter values lying in [0, 1]. A numerical example is given to analyze the performance of the all India institutes of medical sciences and compared it with Abdelfattah’s ranking approach.
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.