Download Free Data Analysis For Managers With Microsoft Excel Book in PDF and EPUB Free Download. You can read online Data Analysis For Managers With Microsoft Excel and write the review.

This text presents statistical concepts and methods in a unified, modern, spreadsheet-oriented approach. Featuring a wealth of business applications, this examples-based text illustrates a variety of statistical methods to help students analyze data sets and uncover important information to aid decision-making. DATA ANALYSIS FOR MANAGERS contains professional StatPro add-ins for Microsoft Excel from Palisade, valued at one hundred fifty dollars packaged at no additional cost with every new text.
Explains how to distil big data into manageable sets and use them to optimise business and investment decisions. Reveals techniques to improve a wide range of decisions, and use simple Excel charts to grasp the results. Includes downloadable Excel workbooks to adapt to your own requirements.
Updated to take account of Office XP, this book provides Excel users with the ability to analyse data quickly. The book's organization parallels a standard course in business statistics.
Use Excel 2013’s statistical tools to transform your data into knowledge Conrad Carlberg shows how to use Excel 2013 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features, including recently introduced consistency functions. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes. You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, this edition adds two more chapters on inferential statistics, covering crucial topics ranging from experimental design to the statistical power of F tests. Becoming an expert with Excel statistics has never been easier! You’ll find crystal-clear instructions, insider insights, and complete step-by-step projects—all complemented by extensive web-based resources. Master Excel’s most useful descriptive and inferential statistical tools Tell the truth with statistics—and recognize when others don’t Accurately summarize sets of values Infer a population’s characteristics from a sample’s frequency distribution Explore correlation and regression to learn how variables move in tandem Use Excel consistency functions such as STDEV.S() and STDEV.P() Test differences between two means using z tests, t tests, and Excel’s Data Analysis Add-in Use ANOVA to test differences between more than two means Explore statistical power by manipulating mean differences, standard errors, directionality, and alpha Take advantage of Recommended PivotTables, Quick Analysis, and other Excel 2013 shortcuts
Master business modeling and analysis techniques with Microsoft Excel and transform data into bottom-line results. Award-winning educator Wayne Winston's hands-on, scenario-focused guide helps you use today's Excel to ask the right questions and get accurate, actionable answers. More extensively updated than any previous edition, new coverage ranges from one-click data analysis to STOCKHISTORY, dynamic arrays to Power Query, and includes six new chapters. Practice with over 900 problems, many based on real challenges faced by working analysts. Solve real problems with Microsoft Excel—and build your competitive advantage Quickly transition from Excel basics to sophisticated analytics Use recent Power Query enhancements to connect, combine, and transform data sources more effectively Use the LAMBDA and LAMBDA helper functions to create Custom Functions without VBA Use New Data Types to import data including stock prices, weather, information on geographic areas, universities, movies, and music Build more sophisticated and compelling charts Use the new XLOOKUP function to revolutionize your lookup formulas Master new Dynamic Array formulas that allow you to sort and filter data with formulas and find all UNIQUE entries Illuminate insights from geographic and temporal data with 3D Maps Improve decision-making with probability, Bayes' theorem, and Monte Carlo simulation and scenarios Use Excel trend curves, multiple regression, and exponential smoothing for predictive analytics Use Data Model and Power Pivot to effectively build and use relational data sources inside an Excel workbook
Applied Business Statistics for Business and Management using Microsoft Excel is the first book to illustrate the capabilities of Microsoft Excel to teach applied statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical statistical problems in industry. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Applied Business Statistics for Business and Management capitalizes on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and workplace. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand business problems. Practice problems are provided at the end of each chapter with their solutions.
Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
USE EXCEL’S STATISTICAL TOOLS TO TRANSFORM YOUR DATA INTO KNOWLEDGE Nationally recognized Excel expert Conrad Carlberg shows you how to use Excel 2016 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples and downloadable workbooks, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes. You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, Carlberg offers insightful coverage of crucial topics ranging from experimental design to the statistical power of F tests. Updated for Excel 2016, this guide covers both modern consistency functions and legacy compatibility functions. Becoming an expert with Excel statistics has never been easier! In this book, you’ll find crystal-clear instructions, insider insights, and complete step-by-step guidance. Master Excel’s most useful descriptive and inferential statistical tools Understand how values cluster together or disperse, and how variables move or classify jointly Tell the truth with statistics—and recognize when others don’t Infer a population’s characteristics from a sample’s frequency distribution Explore correlation and regression to learn how variables move in tandem Use Excel consistency functions such as STDEV.S( ) and STDEV.P( ) Test differences between two means using z tests, t tests, and Excel’s Data Analysis Add-in Identify skewed distributions using Excel’s new built-in box-and-whisker plots and histograms Evaluate statistical power and control risk Explore how randomized block and split plot designs alter the derivation of F-ratios Use coded multiple regression analysis to perform ANOVA with unbalanced factorial designs Analyze covariance with ANCOVA, and properly use multiple covariance Take advantage of Recommended PivotTables, Quick Analysis, and other Excel 2016 shortcuts
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis–if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs. Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R–including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool. Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you’ve finished, you’ll be comfortable using R to solve a wide spectrum of problems–including many you just couldn’t handle with Excel. • Smoothly transition to R and its radically different user interface • Leverage the R community’s immense library of packages • Efficiently move data between Excel and R • Use R’s DescTools for descriptive statistics, including bivariate analyses • Perform regression analysis and statistical inference in R and Excel • Analyze variance and covariance, including single-factor and factorial ANOVA • Use R’s mlogit package and glm function for Solver-style logistic regression • Analyze time series and principal components with R and Excel