Download Free Dairy Waste Treatment By Aeration Book in PDF and EPUB Free Download. You can read online Dairy Waste Treatment By Aeration and write the review.

Microbial Ecology of Activated Sludge, written for both microbiologists and engineers, critically reviews our current understanding of the microbiology of activated sludge, the most commonly used process for treating both domestic and industrial wastes. The contributors are all internationally recognized as leading research workers in activated sludge microbiology, and all have made valuable contributions to our present understanding of the process. The book pays particular attention to how the application of molecular methods has changed our perceptions of the identity of the filamentous bacteria causing the operational disorders of bulking and foaming, and the bacteria responsible for nitrification and denitrification and phosphorus accumulation in nutrient removal processes. Special attention is given to how it is now becoming possible to relate the composition of the community of microbes present in activated sludge, and the in situ function of individual populations there, and how such information might be used to manage and control these systems better. Detailed descriptions of some of these molecular methods are provided to allow newcomers to this field of study an opportunity to apply them in their research. Comprehensive descriptions of organisms of interest and importance are also given, together with high quality photos of activated sludge microbes. Activated sludge processes have been used globally for nearly 100 years, and yet we still know very little of how they work. In the past 15 years the advent of molecular culture independent methods of study have provided tools enabling microbiologists to understand which organisms are present in activated sludge, and critically, what they might be doing there. Microbial Ecology of Activated Sludge will be the first book available to deal comprehensively with the very exciting new information from applying these methods, and their impact on how we now view microbiologically mediated processes taking place there. As such it will be essential reading for microbial ecologists, environmental biotechnologists and engineers involved in designing and managing these plants. It will also be suitable for postgraduate students working in this field.
Many standard industrial waste treatment texts sufficiently address a few major technologies for conventional in-plant environmental control strategies in the food industry. But none explore the complete range of technologies with a focus on new developments in innovative and alternative technology, design criteria, effluent standards, managerial d
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.
Sludge Reduction Technologies in Wastewater Treatment Plants is a review of the sludge reduction techniques integrated in wastewater treatment plants with detailed chapters on the most promising and most widespread techniques. The aim of the book is to update the international community on the current status of knowledge and techniques in the field of sludge reduction. It will provide a comprehensive understanding of the following issues in sludge reduction: principles of sludge reduction techniques; process configurations; potential performance; advantages and drawbacks; economics and energy consumption. This book will be essential reading for managers and technical staff of wastewater treatment plants as well as graduate students and post-graduate specialists.
With rampant industrialization, the management of waste generated by various industries is becoming a mammoth problem. Wastewater discharges from industrial and commercial sources may contain pollutants at levels that could affect the quality of receiving waters or interfere with potable water supplies. Thousands of small and large-scale industrial units dump their waste, which is often toxic and hazardous, in open spaces and nearby water sources. Over the last three decades, many cases of serious and permanent damage to the environment and human health on the part of these industries have come to the fore. This book mainly focuses on the biological treatment of wastewater from various industries, and provides detailed information on the sources and characteristics of this wastewater, followed by descriptions of the biological methods used to treat them. Individual chapters address the treatment of wastewater from pulp and paper mills; tanneries; distilleries, sugar mills; the dairy industry; wine industry; textile industry; pharmaceutical industry; food processing industry; oil refinery/petroleum industry; fertilizer industry and beverage/ soft drink bottling industry; and include the characteristics of wastewater, evaluation of biological treatment methods, and recycling of wastewater. Easy to follow, with simple explanations and a good framework for understanding the complex nature of biological wastewater treatment processes, the book will be instrumental to quickly understanding various aspects of the biological treatment of industrial wastewater. It will serve as a valuable reference book for scientists, researchers, educators, and engineers alike.