Download Free Cyber Security Intelligence And Analytics Book in PDF and EPUB Free Download. You can read online Cyber Security Intelligence And Analytics and write the review.

This textbook is for courses in cyber security education that follow National Initiative for Cybersecurity Education (NICE) KSAs work roles and framework, that adopt the Competency-Based Education (CBE) method. The book follows the CBT (KSA) general framework, meaning each chapter contains three sections, knowledge and questions, and skills/labs for Skills and Abilities. The author makes an explicit balance between knowledge and skills material in information security, giving readers immediate applicable skills. The book is divided into seven parts: Securely Provision; Operate and Maintain; Oversee and Govern; Protect and Defend; Analysis; Operate and Collect; Investigate. All classroom materials (in the book an ancillary) adhere to the NICE framework. Mirrors classes set up by the National Initiative for Cybersecurity Education (NICE) Adopts the Competency-Based Education (CBE) method of teaching, used by universities, corporations, and in government training Includes content and ancillaries that provide skill-based instruction on compliance laws, information security standards, risk response and recovery, and more
This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes. The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions – this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.
This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.
Information Security Analytics gives you insights into the practice of analytics and, more importantly, how you can utilize analytic techniques to identify trends and outliers that may not be possible to identify using traditional security analysis techniques. Information Security Analytics dispels the myth that analytics within the information security domain is limited to just security incident and event management systems and basic network analysis. Analytic techniques can help you mine data and identify patterns and relationships in any form of security data. Using the techniques covered in this book, you will be able to gain security insights into unstructured big data of any type. The authors of Information Security Analytics bring a wealth of analytics experience to demonstrate practical, hands-on techniques through case studies and using freely-available tools that will allow you to find anomalies and outliers by combining disparate data sets. They also teach you everything you need to know about threat simulation techniques and how to use analytics as a powerful decision-making tool to assess security control and process requirements within your organization. Ultimately, you will learn how to use these simulation techniques to help predict and profile potential risks to your organization. - Written by security practitioners, for security practitioners - Real-world case studies and scenarios are provided for each analytics technique - Learn about open-source analytics and statistical packages, tools, and applications - Step-by-step guidance on how to use analytics tools and how they map to the techniques and scenarios provided - Learn how to design and utilize simulations for "what-if" scenarios to simulate security events and processes - Learn how to utilize big data techniques to assist in incident response and intrusion analysis
This book highlights several gaps that have not been addressed in existing cyber security research. It first discusses the recent attack prediction techniques that utilize one or more aspects of information to create attack prediction models. The second part is dedicated to new trends on information fusion and their applicability to cyber security; in particular, graph data analytics for cyber security, unwanted traffic detection and control based on trust management software defined networks, security in wireless sensor networks & their applications, and emerging trends in security system design using the concept of social behavioral biometric. The book guides the design of new commercialized tools that can be introduced to improve the accuracy of existing attack prediction models. Furthermore, the book advances the use of Knowledge-based Intrusion Detection Systems (IDS) to complement existing IDS technologies. It is aimed towards cyber security researchers.
Traditional marketing techniques have become outdated by the emergence of the internet, and for companies to survive in the new technological marketplace, they must adopt digital marketing and business analytics practices. Unfortunately, with the benefits of improved storage and flow of information comes the risk of cyber-attack. Business Analytics and Cyber Security Management in Organizations compiles innovative research from international professionals discussing the opportunities and challenges of the new era of online business. Outlining updated discourse for business analytics techniques, strategies for data storage, and encryption in emerging markets, this book is ideal for business professionals, practicing managers, and students of business.
This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Security Analytics for the Internet of Everything compiles the latest trends, technologies, and applications in this emerging field. It includes chapters covering emerging security trends, cyber governance, artificial intelligence in cybersecurity, and cyber challenges. Contributions from leading international experts are included. The target audience for the book is graduate students, professionals, and researchers working in the fields of cybersecurity, computer networks, communications, and the Internet of Everything (IoE). The book also includes some chapters written in a tutorial style so that general readers can easily grasp some of the ideas.
This book presents the outcomes of the 2022 4th International Conference on Cyber Security Intelligence and Analytics (CSIA 2022), an international conference dedicated to promoting novel theoretical and applied research advances in the interdisciplinary field of cyber-security, particularly focusing on threat intelligence, analytics, and countering cyber-crime. The conference provides a forum for presenting and discussing innovative ideas, cutting-edge research findings and novel techniques, methods and applications on all aspects of cyber-security intelligence and analytics. Due to COVID-19, authors, keynote speakers and PC committees will attend the conference online.
Similar to unraveling a math word problem, Security Intelligence: A Practitioner's Guide to Solving Enterprise Security Challenges guides you through a deciphering process that translates each security goal into a set of security variables, substitutes each variable with a specific security technology domain, formulates the equation that is the deployment strategy, then verifies the solution against the original problem by analyzing security incidents and mining hidden breaches, ultimately refines the security formula iteratively in a perpetual cycle. You will learn about: Secure proxies – the necessary extension of the endpoints Application identification and control – visualize the threats Malnets – where is the source of infection and who are the pathogens Identify the security breach – who was the victim and what was the lure Security in Mobile computing – SNAFU With this book, you will be able to: Identify the relevant solutions to secure the infrastructure Construct policies that provide flexibility to the users so to ensure productivity Deploy effective defenses against the ever evolving web threats Implement solutions that are compliant to relevant rules and regulations Offer insight to developers who are building new security solutions and products