Download Free Current Algebra And Anomalies Book in PDF and EPUB Free Download. You can read online Current Algebra And Anomalies and write the review.

Current algebra remains our most successful analysis of fundamental particle interactions. This collection of surveys on current algebra and anomalies is a successor volume to Lectures on Current Algebra and Its Applications (Princeton Series in Physics, 1972). Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
http://www.worldscientific.com/worldscibooks/10.1142/0131
Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.
A timely addition to the literature, this volume contains authoritative reviews of three important areas in the physics of elementary particles. Sam B. Treiman, in "Current Algebra and PCAC," reviews the present state of the weak interactions. In "Field Theoretic Investigations in Current Algebra," Roman Jackiw deals with recent developments in current algebra and its applications, giving particular attention to anomalies. David J. Gross covers the high energy inelastic lepton-hadron scattering in his paper, "The High Energy Behavior of Weak and Electromagnetic Interactions." Originally published in 1972. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Professor Roman Jackiw is a theoretical physicist renowned for his many fundamental contributions and discoveries in quantum and classical field theories, ranging from high energy physics and gravitation to condensed matter and the physics of fluids. Among his major achievements is the establishment of the presence of the famous Adler-Bell-Jackiw anomalies in quantum field theory, a discovery with far-reaching implications for the structure of the Standard Model of particle physics and all attempts to go beyond it. Other important contributions, among many, that one may mention here are the topological mass term in gravity and gauge theories, and the fractionalization of fermion number and charge in the presence of topological objects.Roman Jackiw, a Professor Emeritus at the MIT Center for Theoretical Physics, is the recipient of several international awards including the Dannie Heineman Prize for Mathematical Physics and the Dirac Medal of the ICTP. He is a member of the US National Academy of Sciences and honorary doctor of Kiev, Montreal, Tours, Turin and Uppsala universities.To celebrate his 80th birthday, many students and colleagues of Professor Jackiw have come together to share interesting anecdotes of working with him as well as their latest research, some of it inspired by his work. Edited by his former students Antti Niemi and Terry Tomboulis together with his long-time friend KK Phua, this festschrift volume is a must-have collection for all theoretical physicists.
This book presents a modern view of anomalies in quantum field theories. It is divided into six parts. The first part is preparatory covering an introduction to fermions, a description of the classical symmetries, and a short introduction to conformal symmetry. The second part of the book is devoted to the relation between anomalies and cohomology. The third part deals with perturbative methods to compute gauge, diffeomorphism and trace anomalies. In the fourth part the same anomalies are calculated with non-perturbative heat-kernel-like methods. Part five is devoted to the family's index theorem and its application to chiral anomalies, and to the differential characters and their applications to global anomalies. Part six is devoted to special topics including a complete calculation of trace and diffeomorphism anomalies of a Dirac fermion in a MAT background in two dimensions, Wess-Zumino terms in field theories, sigma models, their local and global anomalies and their cancelation, and finally the analysis of the worldsheet, sigma model, and target space anomalies of string and superstring theories. The book is targeted to researchers and graduate students.
This book honors the remarkable science and life of Shoucheng Zhang, a condensed matter theorist known for his work on topological insulators, the quantum Hall effect, spintronics, superconductivity, and other fields. It contains the contributions displayed at the Shoucheng Zhang Memorial Workshop held on May 2-4, 2019 at Stanford University.
An acclaimed physicist’s accessible yet rigorous introduction to quantum mechanics for nonspecialists This is a rare and much-needed book: a concise but comprehensive account of quantum mechanics for popular science readers written by a respected physicist. Sam Treiman—internationally renowned for his work in particle physics—makes quantum mechanics accessible to nonspecialists. Combining mastery of the material with clear, elegant prose and infectious enthusiasm, he conveys the substance, methods, and profound oddities of the field. Treiman begins with an overview of quantum mechanics. He sketches the early development of the field by Einstein, Bohr, Heisenberg, Schrödinger, and others, and he makes clear how the quantum outlook flies in the face of common sense. As he explains, the quantum world is intrinsically probabilistic. For example, a particle is not in general in some particular place at a given instant, nor does it have a definite momentum. According to the Heisenberg uncertainty principle, there is a limit to how well both location and momentum can be specified simultaneously. In addition, particles can move through barriers and otherwise move in regions of space that are forbidden by classical mechanics. If a particle has a choice of different paths, it pursues all of them at once. Particles display wave-like characteristics and waves show particle-like characteristics. Treiman pays special attention to the more fundamental wave outlook and its expression in quantum field theory. He deals here with the remarkable fact that all the particles of a given species are strictly identical, and with the unnerving fact that particles can be created and destroyed. As Treiman introduces us to these and other wonders, he also touches—without resolution—on some of the deep philosophical problems of quantum mechanics, notably how probabilities become facts. Weaving together impeccable science, engaging writing, and a talent for clear explanation honed over Treiman's distinguished career as a physicist and teacher, The Odd Quantum is a remarkable survey of a field that changed the course of modern scientific and philosophical thought.